ABOUT THE SPEAKER
Jean-Baptiste Michel - Data researcher
Jean-Baptiste Michel looks at how we can use large volumes of data to better understand our world.

Why you should listen

Jean-Baptiste Michel holds joint academic appointments at Harvard (FQEB Fellow) and Google (Visiting Faculty). His research focusses on using large volumes of data as tools that help better understand the world around us -- from the way diseases progress in patients over years, to the way cultures change in human societies over centuries. With his colleague Erez Lieberman Aiden, Jean-Baptiste is a Founding Director of Harvard's Cultural Observatory, where their research team pioneers the use of quantitative methods for the study of human culture, language and history. His research was featured on the covers of Science and Nature, on the front pages of the New York Times and the Boston Globe, in The Economist, Wired and many other venues. The online tool he helped create -- ngrams.googlelabs.com -- was used millions of times to browse cultural trends. Jean-Baptiste is an Engineer from Ecole Polytechnique (Paris), and holds an MS in Applied Mathematics and a PhD in Systems Biology from Harvard.

More profile about the speaker
Jean-Baptiste Michel | Speaker | TED.com
TED2012

Jean-Baptiste Michel: The mathematics of history

Jean-Baptiste Michel: Matematika povijesti

Filmed:
1,279,350 views

Što matematika može reći o povijesti? Prema TED Fellowu Jean-Baptistu Michelu, dosta toga. Od jezičnih promjena do smrtonosnosti ratova, on pokazuje kako digitalizirana povijest tek počinje otkrivati duboke temeljne obrasce.
- Data researcher
Jean-Baptiste Michel looks at how we can use large volumes of data to better understand our world. Full bio

Double-click the English transcript below to play the video.

00:15
So it turnsokreti out that mathematicsmatematika is a very powerfulsnažan languagejezik.
0
0
3671
Ispostavilo se da je matematika vrlo moćan jezik.
00:19
It has generatedgeneriran considerableznatan insightuvid in physicsfizika,
1
3671
2312
Ostvarila je značajan uvid u fiziku,
00:21
in biologybiologija and economicsekonomija,
2
5983
2100
biologiju i ekonomiju,
00:23
but not that much in the humanitieshumaniora and in historypovijest.
3
8083
2817
no baš i ne prevelik u humanističke znanosti i povijest.
00:26
I think there's a beliefvjerovanje that it's just impossiblenemoguće,
4
10900
2283
Mislim da postoji uvjerenje da je to naprosto nemoguće,
00:29
that you cannotNe možete quantifyizmjeriti the doingsdjela of mankindčovječanstvo,
5
13183
2646
da ne možete kvantificirati ljudska djela,
00:31
that you cannotNe možete measuremjera historypovijest.
6
15829
2519
da ne možete mjeriti povijest.
00:34
But I don't think that's right.
7
18348
1527
No ja ne mislim da je to točno.
00:35
I want to showpokazati you a couplepar of examplesprimjeri why.
8
19875
2042
Želim vam pokazati nekoliko primjera zašto.
00:37
So my collaboratorsuradnik ErezErez and I were considerings obzirom na the followingsljedeći factčinjenica:
9
21917
2958
Dakle, moj suradnik Erez i ja
razmatrali smo sljedeću činjenicu:
00:40
that two kingskraljevi separatedodvojen by centuriesstoljeća
10
24875
2729
dva će kralja razdvojena stoljećima
00:43
will speakgovoriti a very differentdrugačiji languagejezik.
11
27604
1767
govoriti vrlo različitim jezikom.
00:45
That's a powerfulsnažan historicalpovijesni forcesila.
12
29371
2304
To je snažna povijesna sila.
00:47
So the kingkralj of EnglandEngleska, AlfredAlfred the Great,
13
31675
1773
Tako će kralj Engleske Alfred Veliki
00:49
will use a vocabularyrječnik and grammargramatika
14
33448
1640
koristiti vokabular i gramatiku
00:50
that is quitedosta differentdrugačiji from the kingkralj of hipkuk hopposkok, Jay-ZJay-Z.
15
35088
3700
koji se prilično razlikuju od onih
kralja hip hopa, Jay-Z-ja.
00:54
(LaughterSmijeh)
16
38788
1666
(Smijeh)
00:56
Now it's just the way it is.
17
40454
2171
To je naprosto tako.
00:58
LanguageJezik changespromjene over time, and it's a powerfulsnažan forcesila.
18
42625
2292
Jezik se mijenja s vremenom i to je snažna sila.
01:00
So ErezErez and I wanted to know more about that.
19
44917
2287
Erez i ja smo željeli saznati više o tome.
01:03
So we paidplaćen attentionpažnja to a particularposebno grammaticalgramatički rulepravilo, past-tenseProšlo vrijeme conjugationkonjugacije.
20
47204
3657
Pa smo obratili pozornost na posebno gramatičko pravilo, konjugaciju prošlog vremena.
01:06
So you just adddodati "edEd" to a verbglagol at the endkraj to signifyoznačavaju the pastprošlost.
21
50861
3264
Znači, samo na kraj glagola dodate "ed" kako biste označili prošlost.
01:10
"TodayDanas I walkhodati. YesterdayJučer I walkedhodao."
22
54125
1927
"Danas hodam. Jučer sam hodao."
01:11
But some verbsglagoli are irregularneregularan.
23
56052
1344
No neki su glagoli nepravilni.
01:13
"YesterdayJučer I thought."
24
57396
1396
"Jučer sam mislio."
01:14
Now what's interestingzanimljiv about that
25
58792
1666
Kod toga je zanimljivo
01:16
is irregularneregularan verbsglagoli betweenizmeđu AlfredAlfred and Jay-ZJay-Z have becomepostati more regularredovan.
26
60458
3830
to da su nepravilni glagoli između Alfreda i Jay-Z-a postali pravilniji.
01:20
Like the verbglagol "to wedSrijeda" that you see here has becomepostati regularredovan.
27
64288
2735
Tako je glagol "vjenčati" koji ovdje vidite postao pravilan.
01:22
So ErezErez and I followedslijedi the fatesudbina of over 100 irregularneregularan verbsglagoli
28
67023
4022
Stoga smo Erez i ja pratili sudbinu više od 100 nepravilnih glagola
01:26
throughkroz 12 centuriesstoljeća of Englishengleski languagejezik,
29
71045
1919
tijekom 12 stoljeća postojanja engleskog jezika
01:28
and we saw that there's actuallyzapravo a very simplejednostavan mathematicalmatematički patternuzorak
30
72964
2911
i uvidjeli smo da postoji zapravo vrlo jednostavan matematički uzorak
01:31
that capturesbilježi this complexkompleks historicalpovijesni changepromijeniti,
31
75875
2542
koji obuhvaća tu složenu povijesnu promjenu,
01:34
namelynaime, if a verbglagol is 100 timesputa more frequentčest than anotherjoš,
32
78417
3660
to jest, ako je neki glagol 100 puta učestaliji od drugih,
01:37
it regularizesregularizes 10 timesputa slowersporije.
33
82077
2665
on postaje pravilan 10 puta sporije.
01:40
That's a piecekomad of historypovijest, but it comesdolazi in a mathematicalmatematički wrappingomatanje.
34
84742
3935
To je djelić povijesti, no umotan u matematiku.
01:44
Now in some casesslučajevi mathmatematika can even help explainobjasniti,
35
88677
3654
U nekim slučajevima matematika može čak pomoći objasniti
01:48
or proposepredložiti explanationsobjašnjenja for, historicalpovijesni forcessnaga.
36
92331
2879
ili predložiti objašnjenja nekih povijesnih sila.
01:51
So here SteveSteve PinkerPinker and I
37
95210
1832
Stoga smo Steve Pinker i ja
01:52
were considerings obzirom na the magnitudeveličina of warsratovi duringza vrijeme the last two centuriesstoljeća.
38
97042
3852
razmatrali opseg ratova tijekom posljednja dva stoljeća.
01:56
There's actuallyzapravo a well-knowndobro poznati regularitypravilnost to them
39
100894
2495
Zapravo, za njih postoji poznata pravilnost
01:59
where the numberbroj of warsratovi that are 100 timesputa deadliersmrtonosniji
40
103389
3422
gdje je broj ratova koji su 100 puta smrtonosniji
02:02
is 10 timesputa smallermanji.
41
106811
1952
10 puta manji.
02:04
So there are 30 warsratovi that are about as deadlyubojit as the SixŠest DaysDana WarRat,
42
108763
3344
Dakle, postoji 30 ratova koji su jednako smrtonosni poput Šestodnevnog rata,
02:08
but there's only fourčetiri warsratovi that are 100 timesputa deadliersmrtonosniji --
43
112107
2820
no samo četiri su rata 100 puta smrtonosnija -
02:10
like WorldSvijet WarRat I.
44
114927
1977
poput Prvog svjetskog rata.
02:12
So what kindljubazan of historicalpovijesni mechanismmehanizam can produceproizvoditi that?
45
116904
2923
Kakav povijesni mehanizam može to proizvesti?
02:15
What's the originpodrijetlo of this?
46
119827
2000
Koje je porijeklo toga?
02:17
So SteveSteve and I, throughkroz mathematicalmatematički analysisanaliza,
47
121827
2265
Tako da smo Steve i ja, putem matematičke analize,
02:19
proposepredložiti that there's actuallyzapravo a very simplejednostavan phenomenonfenomen at the rootkorijen of this,
48
124092
4241
predložili da je u korijenu toga zapravo vrlo jednostavan fenomen,
02:24
whichkoji lieslaži in our brainsmozak.
49
128333
1690
koji leži u našim mozgovima.
02:25
This is a very well-knowndobro poznati featuresvojstvo
50
130023
2019
To je poznata značajka
02:27
in whichkoji we perceivedoživljavaju quantitieskoličine in relativerođak waysnačine --
51
132042
2975
prema kojoj spoznajemo količine na relativne načine -
02:30
quantitieskoličine like the intensityintenzitet of lightsvjetlo or the loudnessujednačavanja glasnoće of a soundzvuk.
52
135017
3716
količine poput jačine svjetlosti ili glasnoće zvuka.
02:34
For instanceprimjer, committingizvršenje 10,000 soldiersvojnici to the nextSljedeći battlebitka soundszvukovi like a lot.
53
138733
5309
Na primjer, poslati 10.000 vojnika u sljedeću bitku zvuči mnogo.
02:39
It's relativelyrelativno enormousogroman if you've alreadyveć committedpredan 1,000 soldiersvojnici previouslyprethodno.
54
144042
3444
Relativno je ogromno ako ste već poslali 1000 vojnika.
02:43
But it doesn't soundzvuk so much,
55
147486
1827
No to ne zvuči tako puno,
02:45
it's not relativelyrelativno enoughdovoljno, it won'tnavika make a differencerazlika
56
149313
3020
nije relativno dovoljno, neće ništa značiti
02:48
if you've alreadyveć committedpredan 100,000 soldiersvojnici previouslyprethodno.
57
152333
2952
ako ste već poslali 100.000 vojnika.
02:51
So you see that because of the way we perceivedoživljavaju quantitieskoličine,
58
155285
3613
Tako da vidite da zbog načina na koji doživljavamo količine,
02:54
as the warrat dragsvuče on,
59
158898
1767
kako se rat oteže,
02:56
the numberbroj of soldiersvojnici committedpredan to it and the casualtiesgubici
60
160665
3085
broj vojnika poslanih u njega i žrtava
02:59
will increasepovećati not linearlylinearno --
61
163750
1683
neće se povećavati linearno -
03:01
like 10,000, 11,000, 12,000 --
62
165433
1888
kao na primjer 10.000, 11.000, 12.000 -
03:03
but exponentiallyeksponencijalno -- 10,000, laterkasnije 20,000, laterkasnije 40,000.
63
167321
4275
nego eksponencijalno - 10.000, kasnije 20.000, zatim 40.000.
03:07
And so that explainsobjašnjava this patternuzorak that we'veimamo seenvidio before.
64
171596
3085
To objašnjava uzorak koji smo ranije vidjeli.
03:10
So here mathematicsmatematika is ableu stanju to linkveza a well-knowndobro poznati featuresvojstvo of the individualpojedinac mindum
65
174681
5498
Tako matematika može povezati poznatu značajku pojedinog uma
03:16
with a long-termdugoročno historicalpovijesni patternuzorak
66
180179
2989
s dugotrajnim povijesnim uzorkom
03:19
that unfoldsodvija over centuriesstoljeća and acrosspreko continentskontinenti.
67
183168
2857
koji se odvija tijekom stoljeća i diljem kontinenata.
03:21
So these typesvrste of examplesprimjeri, todaydanas there are just a fewnekoliko of them,
68
186025
4017
To su te vrste primjera, danas ih je samo nekolicina,
03:25
but I think in the nextSljedeći decadedesetljeće they will becomepostati commonplaceuobičajena pojava.
69
190042
2689
no mislim da će u sljedećem desetljeću postati uobičajeni.
03:28
The reasonrazlog for that is that the historicalpovijesni recordsnimiti
70
192731
2392
Razlog je tome to što povijesni zapisi
03:31
is becomingpostaje digitizedDigitalizirani at a very fastbrzo pacetempo.
71
195123
2460
postaju vrlo brzo digitalizirani.
03:33
So there's about 130 millionmilijuna booksknjige
72
197583
2610
Postoji oko 130 milijuna knjiga
03:36
that have been writtennapisan sinceod the dawnzora of time.
73
200193
2311
napisanih od prapočela vremena.
03:38
CompaniesTvrtke like GoogleGoogle have digitizedDigitalizirani manymnogi of them --
74
202504
2454
Tvrtke poput Googlea digitalizirale su mnoge od njih
03:40
aboveiznad 20 millionmilijuna actuallyzapravo.
75
204958
1584
zapravo, oko 20 milijuna.
03:42
And when the stuffstvari of historypovijest is availabledostupno in digitaldigitalni formoblik,
76
206542
3578
A kad je povijesna građa dostupna u digitalnom formatu,
03:46
it makesmarke it possiblemoguće for a mathematicalmatematički analysisanaliza
77
210120
2380
postaje moguće matematičkom analizom
03:48
to very quicklybrzo and very convenientlypovoljno
78
212500
2375
vrlo brzo i jednostavno
03:50
reviewpregled trendstrendovi in our historypovijest and our cultureKultura.
79
214875
2725
pregledati trendove unutar naše povijesti i kulture.
03:53
So I think in the nextSljedeći decadedesetljeće,
80
217600
2721
Mislim da će se u sljedećem desetljeću
03:56
the sciencesznanosti and the humanitieshumaniora will come closerbliže togetherzajedno
81
220321
2750
prirodne i humanističke znanosti približiti jedne drugima
03:58
to be ableu stanju to answerodgovor deepduboko questionspitanja about mankindčovječanstvo.
82
223071
3329
kako bi mogle dati odgovore na značajna pitanja o čovječanstvu.
04:02
And I think that mathematicsmatematika will be a very powerfulsnažan languagejezik to do that.
83
226400
4121
Mislim i da će matematika biti vrlo moćan jezik kojim će se to činiti.
04:06
It will be ableu stanju to revealotkriti newnovi trendstrendovi in our historypovijest,
84
230521
3146
Moći će otkriti nove trendove unutar naše povijesti,
04:09
sometimesponekad to explainobjasniti them,
85
233667
1750
katkad da bi ih objasnila,
04:11
and maybe even in the futurebudućnost to predictpredvidjeti what's going to happendogoditi se.
86
235417
3306
možda čak i u budućnosti predvidjela što će se dogoditi.
04:14
Thank you very much.
87
238723
1491
Puno vam hvala.
04:16
(ApplausePljesak)
88
240214
3678
(Pljesak)
Translated by Vedrana Čemerin
Reviewed by Suzana Barić

▲Back to top

ABOUT THE SPEAKER
Jean-Baptiste Michel - Data researcher
Jean-Baptiste Michel looks at how we can use large volumes of data to better understand our world.

Why you should listen

Jean-Baptiste Michel holds joint academic appointments at Harvard (FQEB Fellow) and Google (Visiting Faculty). His research focusses on using large volumes of data as tools that help better understand the world around us -- from the way diseases progress in patients over years, to the way cultures change in human societies over centuries. With his colleague Erez Lieberman Aiden, Jean-Baptiste is a Founding Director of Harvard's Cultural Observatory, where their research team pioneers the use of quantitative methods for the study of human culture, language and history. His research was featured on the covers of Science and Nature, on the front pages of the New York Times and the Boston Globe, in The Economist, Wired and many other venues. The online tool he helped create -- ngrams.googlelabs.com -- was used millions of times to browse cultural trends. Jean-Baptiste is an Engineer from Ecole Polytechnique (Paris), and holds an MS in Applied Mathematics and a PhD in Systems Biology from Harvard.

More profile about the speaker
Jean-Baptiste Michel | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee