ABOUT THE SPEAKER
Jean-Baptiste Michel - Data researcher
Jean-Baptiste Michel looks at how we can use large volumes of data to better understand our world.

Why you should listen

Jean-Baptiste Michel holds joint academic appointments at Harvard (FQEB Fellow) and Google (Visiting Faculty). His research focusses on using large volumes of data as tools that help better understand the world around us -- from the way diseases progress in patients over years, to the way cultures change in human societies over centuries. With his colleague Erez Lieberman Aiden, Jean-Baptiste is a Founding Director of Harvard's Cultural Observatory, where their research team pioneers the use of quantitative methods for the study of human culture, language and history. His research was featured on the covers of Science and Nature, on the front pages of the New York Times and the Boston Globe, in The Economist, Wired and many other venues. The online tool he helped create -- ngrams.googlelabs.com -- was used millions of times to browse cultural trends. Jean-Baptiste is an Engineer from Ecole Polytechnique (Paris), and holds an MS in Applied Mathematics and a PhD in Systems Biology from Harvard.

More profile about the speaker
Jean-Baptiste Michel | Speaker | TED.com
TED2012

Jean-Baptiste Michel: The mathematics of history

Jean-Baptiste Michel:用數學看歷史

Filmed:
1,279,350 views

數學如何描述歷史?對 TED Fellow Jean-Baptiste Michel 來說,數學的能力可大著呢。他將以語言的演變和戰爭死傷人數的變化,帶我們一探數位化歷史記錄如何開始逐步揭露出潛藏其中的深層模式。
- Data researcher
Jean-Baptiste Michel looks at how we can use large volumes of data to better understand our world. Full bio

Double-click the English transcript below to play the video.

00:15
So it turns out that mathematics數學 is a very powerful強大 language語言.
0
0
3671
數學是十分強大的語言
00:19
It has generated產生 considerable大量 insight眼光 in physics物理,
1
3671
2312
可幫助人更深入探討物理學
00:21
in biology生物學 and economics經濟學,
2
5983
2100
生物學和經濟學
00:23
but not that much in the humanities人文 and in history歷史.
3
8083
2817
但對人文和歷史卻沒有太大幫助
00:26
I think there's a belief信仰 that it's just impossible不可能,
4
10900
2283
我想大家都認為這是不可能的
00:29
that you cannot不能 quantify量化 the doings行為 of mankind人類,
5
13183
2646
因為我們無法量化人類的行為
00:31
that you cannot不能 measure測量 history歷史.
6
15829
2519
也無法計量歷史
00:34
But I don't think that's right.
7
18348
1527
但對此,我抱持著不同的看法
00:35
I want to show顯示 you a couple一對 of examples例子 why.
8
19875
2042
我想舉幾個例子跟大家解釋原因
00:37
So my collaborator合作者 Erez埃雷茲 and I were considering考慮 the following以下 fact事實:
9
21917
2958
我和合作夥伴 Erez 對於以下這件史實是這麼想的
00:40
that two kings國王 separated分離 by centuries百年
10
24875
2729
相隔幾個世紀的兩位君王
00:43
will speak說話 a very different不同 language語言.
11
27604
1767
會說截然不同的語言
00:45
That's a powerful強大 historical歷史的 force.
12
29371
2304
這就是歷史的強大力量
00:47
So the king國王 of England英國, Alfred阿爾弗雷德 the Great,
13
31675
1773
因此古代英國國王艾佛烈大帝
00:49
will use a vocabulary詞彙 and grammar語法
14
33448
1640
使用的字彙和文法
00:50
that is quite相當 different不同 from the king國王 of hip臀部 hop, Jay-ZJay-Z的.
15
35088
3700
跟當代嘻哈之王 Jay-Z 非常不一樣
00:54
(Laughter笑聲)
16
38788
1666
(笑聲)
00:56
Now it's just the way it is.
17
40454
2171
事實就是這樣
00:58
Language語言 changes變化 over time, and it's a powerful強大 force.
18
42625
2292
語言隨時間變化,而且還是一股強大的力量
01:00
So Erez埃雷茲 and I wanted to know more about that.
19
44917
2287
Erez 和我想更深入了解這件事
01:03
So we paid支付 attention注意 to a particular特定 grammatical語法的 rule規則, past-tense過去式 conjugation共軛.
20
47204
3657
我們因而注意到一條特別的文法規則:過去式動詞變化
01:06
So you just add "edED" to a verb動詞 at the end結束 to signify表示 the past過去.
21
50861
3264
也就是在動詞後加上「ed」來代表過去
01:10
"Today今天 I walk步行. Yesterday昨天 I walked."
22
54125
1927
今天我走 (walk),昨天我走了 (walked)
01:11
But some verbs動詞 are irregular不規則.
23
56052
1344
但是還有一些不規則動詞
01:13
"Yesterday昨天 I thought."
24
57396
1396
昨天我想 (thought)
01:14
Now what's interesting有趣 about that
25
58792
1666
而這件事的有趣之處在於
01:16
is irregular不規則 verbs動詞 between之間 Alfred阿爾弗雷德 and Jay-ZJay-Z的 have become成為 more regular定期.
26
60458
3830
從艾佛列大帝到 Jay-Z 的年代
不規則動詞是否變得更加規則?
01:20
Like the verb動詞 "to wed星期三" that you see here has become成為 regular定期.
27
64288
2735
如你所見,像動詞「結婚」就變得更加規則
01:22
So Erez埃雷茲 and I followed其次 the fate命運 of over 100 irregular不規則 verbs動詞
28
67023
4022
因此 Erez 和我觀察了超過 100 個不規則動詞的演進變化
01:26
through通過 12 centuries百年 of English英語 language語言,
29
71045
1919
時間橫跨 12 世紀的英文
01:28
and we saw that there's actually其實 a very simple簡單 mathematical數學的 pattern模式
30
72964
2911
我們發現其中存在著一個很簡單的數學模式
01:31
that captures捕獲 this complex複雜 historical歷史的 change更改,
31
75875
2542
足以描述這個複雜的歷史演變
01:34
namely亦即, if a verb動詞 is 100 times more frequent頻繁 than another另一個,
32
78417
3660
當一動詞的常用程度比其他動詞高出 100 倍時
01:37
it regularizes規則化 10 times slower比較慢.
33
82077
2665
其規則化的速度就比其他動詞慢 10 倍
01:40
That's a piece of history歷史, but it comes in a mathematical數學的 wrapping包皮.
34
84742
3935
這就是一個可以用數學概括描述的歷史片段
01:44
Now in some cases math數學 can even help explain說明,
35
88677
3654
而在其他狀況下,數學也有助於解釋歷史
01:48
or propose提出 explanations說明 for, historical歷史的 forces軍隊.
36
92331
2879
或者為其提出假說
01:51
So here Steve史蒂夫 Pinker平克 and I
37
95210
1832
Steve Pinker 和我
01:52
were considering考慮 the magnitude大小 of wars戰爭 during the last two centuries百年.
38
97042
3852
思考兩個世紀以來戰爭規模的變化
01:56
There's actually其實 a well-known知名 regularity規律性 to them
39
100894
2495
其中其實存在著大家都很孰悉的規則性
01:59
where the number of wars戰爭 that are 100 times deadlier致命
40
103389
3422
死傷人數高達其它戰爭100 倍的戰爭數量
02:02
is 10 times smaller.
41
106811
1952
其實只有 10 分之 1
02:04
So there are 30 wars戰爭 that are about as deadly致命 as the Six Days War戰爭,
42
108763
3344
有 30 場戰爭其死亡人數與以阿六日戰爭相同
02:08
but there's only four wars戰爭 that are 100 times deadlier致命 --
43
112107
2820
但死傷人數是其 100 倍的戰爭只有四場
02:10
like World世界 War戰爭 I.
44
114927
1977
例如第一次世界大戰
02:12
So what kind of historical歷史的 mechanism機制 can produce生產 that?
45
116904
2923
而這又是哪種歷史機制造成的呢?
02:15
What's the origin起源 of this?
46
119827
2000
其起因又是什麼?
02:17
So Steve史蒂夫 and I, through通過 mathematical數學的 analysis分析,
47
121827
2265
Steve 和我透過數學分析
02:19
propose提出 that there's actually其實 a very simple簡單 phenomenon現象 at the root of this,
48
124092
4241
提出了其實起因來自很簡單的現象
02:24
which哪一個 lies in our brains大腦.
49
128333
1690
這種現象就存在大腦之中
02:25
This is a very well-known知名 feature特徵
50
130023
2019
是種大家都熟知的特性
02:27
in which哪一個 we perceive感知 quantities數量 in relative相對的 ways方法 --
51
132042
2975
也就是我們對「量」的觀感是相對的
02:30
quantities數量 like the intensity強度 of light or the loudness響度 of a sound聲音.
52
135017
3716
如光線「強度」或音量「大小」
02:34
For instance, committing提交 10,000 soldiers士兵 to the next下一個 battle戰鬥 sounds聲音 like a lot.
53
138733
5309
舉例來說,派 1 萬名士兵去打下一場仗
感覺好像很多
02:39
It's relatively相對 enormous巨大 if you've already已經 committed提交 1,000 soldiers士兵 previously先前.
54
144042
3444
假使先前已派了 1 千名士兵的狀況下
感覺的確是如此
02:43
But it doesn't sound聲音 so much,
55
147486
1827
但是有時我們並不覺得人數有這麼多
02:45
it's not relatively相對 enough足夠, it won't慣於 make a difference區別
56
149313
3020
因為「量」的對比不大,因此無法感受差異
02:48
if you've already已經 committed提交 100,000 soldiers士兵 previously先前.
57
152333
2952
假使先前其實已經派了 10 萬大軍
02:51
So you see that because of the way we perceive感知 quantities數量,
58
155285
3613
所以大家現在可以體會我們對「量」的觀感
02:54
as the war戰爭 drags拖動 on,
59
158898
1767
隨著戰爭持續下去
02:56
the number of soldiers士兵 committed提交 to it and the casualties傷亡
60
160665
3085
派遣的士兵和死傷人數
02:59
will increase增加 not linearly線性 --
61
163750
1683
將不會呈線性成長
03:01
like 10,000, 11,000, 12,000 --
62
165433
1888
趨勢不是 1 萬、1萬1、1 萬2
03:03
but exponentially成倍 -- 10,000, later後來 20,000, later後來 40,000.
63
167321
4275
而會呈指數成長,從 1 萬到 2 萬到 4 萬
03:07
And so that explains說明 this pattern模式 that we've我們已經 seen看到 before.
64
171596
3085
這解釋了我們先前看過的模式
03:10
So here mathematics數學 is able能夠 to link鏈接 a well-known知名 feature特徵 of the individual個人 mind心神
65
174681
5498
在此數學可以連結大眾熟知的思維特性
03:16
with a long-term長期 historical歷史的 pattern模式
66
180179
2989
以及長期歷史模式
03:19
that unfolds展開 over centuries百年 and across橫過 continents大陸.
67
183168
2857
這種模式跨越幾個世紀橫跨幾大洲慢慢成形
03:21
So these types類型 of examples例子, today今天 there are just a few少數 of them,
68
186025
4017
這種例子即便在今日仍然屈指可數
03:25
but I think in the next下一個 decade they will become成為 commonplace平凡.
69
190042
2689
但我認為十年之後便將成為常態
03:28
The reason原因 for that is that the historical歷史的 record記錄
70
192731
2392
原因是歷史記錄
03:31
is becoming變得 digitized數字化 at a very fast快速 pace步伐.
71
195123
2460
以很快的速度數位化
03:33
So there's about 130 million百萬 books圖書
72
197583
2610
有史以來
03:36
that have been written書面 since以來 the dawn黎明 of time.
73
200193
2311
人類已經寫了13 億本書
03:38
Companies公司 like Google谷歌 have digitized數字化 many許多 of them --
74
202504
2454
Google 這類公司已經將其中的一大部分數位化
03:40
above以上 20 million百萬 actually其實.
75
204958
1584
實際數量超過 2 億本
03:42
And when the stuff東東 of history歷史 is available可得到 in digital數字 form形成,
76
206542
3578
因此當歷史記錄被數位化後
03:46
it makes品牌 it possible可能 for a mathematical數學的 analysis分析
77
210120
2380
就能拿來做數學分析
03:48
to very quickly很快 and very conveniently便利地
78
212500
2375
讓我們能很快又便利的
03:50
review評論 trends趨勢 in our history歷史 and our culture文化.
79
214875
2725
檢視歷史和文化趨勢
03:53
So I think in the next下一個 decade,
80
217600
2721
因此我認為接下來十年
03:56
the sciences科學 and the humanities人文 will come closer接近 together一起
81
220321
2750
科學和人文將更緊密結合
03:58
to be able能夠 to answer回答 deep questions問題 about mankind人類.
82
223071
3329
而且能夠回答一些與人類相關的深層問題
04:02
And I think that mathematics數學 will be a very powerful強大 language語言 to do that.
83
226400
4121
我更認為數學這種強大語言將能做到此點
04:06
It will be able能夠 to reveal揭示 new trends趨勢 in our history歷史,
84
230521
3146
數學將能揭開歷史的新趨勢
04:09
sometimes有時 to explain說明 them,
85
233667
1750
有時加以解釋
04:11
and maybe even in the future未來 to predict預測 what's going to happen發生.
86
235417
3306
最後甚至也有可能可以預測未來
04:14
Thank you very much.
87
238723
1491
謝謝各位
04:16
(Applause掌聲)
88
240214
3678
(掌聲)
Translated by Ai-Ying (Erin) Chiang
Reviewed by Gina Wang

▲Back to top

ABOUT THE SPEAKER
Jean-Baptiste Michel - Data researcher
Jean-Baptiste Michel looks at how we can use large volumes of data to better understand our world.

Why you should listen

Jean-Baptiste Michel holds joint academic appointments at Harvard (FQEB Fellow) and Google (Visiting Faculty). His research focusses on using large volumes of data as tools that help better understand the world around us -- from the way diseases progress in patients over years, to the way cultures change in human societies over centuries. With his colleague Erez Lieberman Aiden, Jean-Baptiste is a Founding Director of Harvard's Cultural Observatory, where their research team pioneers the use of quantitative methods for the study of human culture, language and history. His research was featured on the covers of Science and Nature, on the front pages of the New York Times and the Boston Globe, in The Economist, Wired and many other venues. The online tool he helped create -- ngrams.googlelabs.com -- was used millions of times to browse cultural trends. Jean-Baptiste is an Engineer from Ecole Polytechnique (Paris), and holds an MS in Applied Mathematics and a PhD in Systems Biology from Harvard.

More profile about the speaker
Jean-Baptiste Michel | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee