ABOUT THE SPEAKER
Jean-Baptiste Michel - Data researcher
Jean-Baptiste Michel looks at how we can use large volumes of data to better understand our world.

Why you should listen

Jean-Baptiste Michel holds joint academic appointments at Harvard (FQEB Fellow) and Google (Visiting Faculty). His research focusses on using large volumes of data as tools that help better understand the world around us -- from the way diseases progress in patients over years, to the way cultures change in human societies over centuries. With his colleague Erez Lieberman Aiden, Jean-Baptiste is a Founding Director of Harvard's Cultural Observatory, where their research team pioneers the use of quantitative methods for the study of human culture, language and history. His research was featured on the covers of Science and Nature, on the front pages of the New York Times and the Boston Globe, in The Economist, Wired and many other venues. The online tool he helped create -- ngrams.googlelabs.com -- was used millions of times to browse cultural trends. Jean-Baptiste is an Engineer from Ecole Polytechnique (Paris), and holds an MS in Applied Mathematics and a PhD in Systems Biology from Harvard.

More profile about the speaker
Jean-Baptiste Michel | Speaker | TED.com
TED2012

Jean-Baptiste Michel: The mathematics of history

让-巴蒂斯特·米歇尔:历史中的数学

Filmed:
1,279,350 views

数学能解释历史么?让-巴蒂斯特·米歇尔在这篇演讲中告诉我们:不仅能,事实上数学可以用来解释很多历史规律。从语言的变迁到战争的伤亡,他向我们展示了数字化存储的历史记录正在逐渐帮助我们深化对历史规律的理解。
- Data researcher
Jean-Baptiste Michel looks at how we can use large volumes of data to better understand our world. Full bio

Double-click the English transcript below to play the video.

00:15
So it turns out that mathematics数学 is a very powerful强大 language语言.
0
0
3671
数学是一门很有用的语言。
00:19
It has generated产生 considerable大量 insight眼光 in physics物理,
1
3671
2312
在解释物理、生物以及经济学方面,
00:21
in biology生物学 and economics经济学,
2
5983
2100
它拥有与生俱来的洞察力,
00:23
but not that much in the humanities人文 and in history历史.
3
8083
2817
但对于历史等人文学科解释力稍弱。
00:26
I think there's a belief信仰 that it's just impossible不可能,
4
10900
2283
我想有人认为用数学解释人文学科是不可能的,
00:29
that you cannot不能 quantify量化 the doings行为 of mankind人类,
5
13183
2646
因为你不能量化人类的行为,
00:31
that you cannot不能 measure测量 history历史.
6
15829
2519
你也不能用数学来度量历史。
00:34
But I don't think that's right.
7
18348
1527
但我并不这样认为,
00:35
I want to show显示 you a couple一对 of examples例子 why.
8
19875
2042
我想向大家展示几个反例。
00:37
So my collaborator合作者 Erez埃雷兹 and I were considering考虑 the following以下 fact事实:
9
21917
2958
我和我的合作伙伴Erez考虑了以下事实:
00:40
that two kings国王 separated分离 by centuries百年
10
24875
2729
这个事实就是身处不同时代的君王
00:43
will speak说话 a very different不同 language语言.
11
27604
1767
会用非常不同的语言交谈。
00:45
That's a powerful强大 historical历史的 force.
12
29371
2304
这是一股非常强大的历史作用力。
00:47
So the king国王 of England英国, Alfred阿尔弗雷德 the Great,
13
31675
1773
因此英国国王阿尔弗雷德大帝,
00:49
will use a vocabulary词汇 and grammar语法
14
33448
1640
将会使用一种语法和词汇,
00:50
that is quite相当 different不同 from the king国王 of hip臀部 hop, Jay-ZJay-Z的.
15
35088
3700
而这种语法和词汇是完全不同于hip hop之王Jay-Z所使用的。
00:54
(Laughter笑声)
16
38788
1666
(笑声)
00:56
Now it's just the way it is.
17
40454
2171
这就是我想说的事实。
00:58
Language语言 changes变化 over time, and it's a powerful强大 force.
18
42625
2292
语言与时俱进,并且拥有强大的力量。
01:00
So Erez埃雷兹 and I wanted to know more about that.
19
44917
2287
因此我和Erez想了解更多有关语言的历史。
01:03
So we paid支付 attention注意 to a particular特定 grammatical语法的 rule规则, past-tense过去式 conjugation共轭.
20
47204
3657
我们研究了一个特定的语法规则:过去式。
01:06
So you just add "edED" to a verb动词 at the end结束 to signify表示 the past过去.
21
50861
3264
人们通过在动词后面加“ed”来表示过去。
01:10
"Today今天 I walk步行. Yesterday昨天 I walked."
22
54125
1927
例如:“Today I walk.”今天我走路,
“Yesterday I walked.”昨天我走路。
01:11
But some verbs动词 are irregular不规则.
23
56052
1344
但有一些动词的变形是不规则的。
01:13
"Yesterday昨天 I thought."
24
57396
1396
例如:“Yesterday I thought.”昨天我思考了。
01:14
Now what's interesting有趣 about that
25
58792
1666
这里有趣的现象是:
01:16
is irregular不规则 verbs动词 between之间 Alfred阿尔弗雷德 and Jay-ZJay-Z的 have become成为 more regular定期.
26
60458
3830
从阿尔弗雷德大帝到Jay-Z时代,不规则动词变的越来越规则了。
01:20
Like the verb动词 "to wed星期三" that you see here has become成为 regular定期.
27
64288
2735
例如你们这里看到的动词“to wed”就变成了规则动词。
01:22
So Erez埃雷兹 and I followed其次 the fate命运 of over 100 irregular不规则 verbs动词
28
67023
4022
因此我和Erez跟踪了100个不规则动词
01:26
through通过 12 centuries百年 of English英语 language语言,
29
71045
1919
在12个世纪的英语演化中的命运,
01:28
and we saw that there's actually其实 a very simple简单 mathematical数学的 pattern模式
30
72964
2911
我们发现了一个非常简单的数学规律
01:31
that captures捕获 this complex复杂 historical历史的 change更改,
31
75875
2542
来捕捉复杂的历史变化,
01:34
namely亦即, if a verb动词 is 100 times more frequent频繁 than another另一个,
32
78417
3660
这个规律就是,如果一个动词比另一个动词的使用频率高一百倍,
01:37
it regularizes规则化 10 times slower比较慢.
33
82077
2665
这个动词规则化的速度就会慢十倍。
01:40
That's a piece of history历史, but it comes in a mathematical数学的 wrapping包皮.
34
84742
3935
这是历史的一部分,但却以数学的方式得以展现。
01:44
Now in some cases math数学 can even help explain说明,
35
88677
3654
在某些情况下,数学甚至可以帮助解释,
01:48
or propose提出 explanations说明 for, historical历史的 forces军队.
36
92331
2879
或者对历史的推动力加以解释。
01:51
So here Steve史蒂夫 Pinker平克 and I
37
95210
1832
我和Steve Pinker
01:52
were considering考虑 the magnitude大小 of wars战争 during the last two centuries百年.
38
97042
3852
考虑了过去两个世纪中战争的激烈程度。
01:56
There's actually其实 a well-known知名 regularity规律性 to them
39
100894
2495
事实上有一条广为人知的规律:
01:59
where the number of wars战争 that are 100 times deadlier致命
40
103389
3422
造成一百倍伤亡人数的战争数目
02:02
is 10 times smaller.
41
106811
1952
只占更少伤亡人数的战争数目的十分之一。
02:04
So there are 30 wars战争 that are about as deadly致命 as the Six Days War战争,
42
108763
3344
有30场战争的伤亡人数与“六日战争”(第三次阿以战争)的几乎持平,
02:08
but there's only four wars战争 that are 100 times deadlier致命 --
43
112107
2820
但只有4场战争比“六日战争”的伤亡人数高出一百倍,
02:10
like World世界 War战争 I.
44
114927
1977
例如第一次世界大战。
02:12
So what kind of historical历史的 mechanism机制 can produce生产 that?
45
116904
2923
那么这背后的历史原因是什么呢?
02:15
What's the origin起源 of this?
46
119827
2000
什么是这条规律的原因呢?
02:17
So Steve史蒂夫 and I, through通过 mathematical数学的 analysis分析,
47
121827
2265
我和Steve通过数学分析,
02:19
propose提出 that there's actually其实 a very simple简单 phenomenon现象 at the root of this,
48
124092
4241
认为这是由一个非常简单的现象导致的,
02:24
which哪一个 lies in our brains大脑.
49
128333
1690
而这个现象植根于我们的意识之中。
02:25
This is a very well-known知名 feature特征
50
130023
2019
这是一个众所周知的特征,
02:27
in which哪一个 we perceive感知 quantities数量 in relative相对的 ways方法 --
51
132042
2975
人们对数量的感觉是相对的,
02:30
quantities数量 like the intensity强度 of light or the loudness响度 of a sound声音.
52
135017
3716
诸如光源的强弱或者声音的大小。
02:34
For instance, committing提交 10,000 soldiers士兵 to the next下一个 battle战斗 sounds声音 like a lot.
53
138733
5309
下面有个例子,派遣10000名士兵去参加下一场战斗乍一听是很多人。
02:39
It's relatively相对 enormous巨大 if you've already已经 committed提交 1,000 soldiers士兵 previously先前.
54
144042
3444
特别是如果你之前只派遣了1000名士兵去参战的话,这个数字就更显得庞大了。
02:43
But it doesn't sound声音 so much,
55
147486
1827
但同样的数字也会显得不那么多,
02:45
it's not relatively相对 enough足够, it won't惯于 make a difference区别
56
149313
3020
当它还不足以造成巨大的差别的时候,
02:48
if you've already已经 committed提交 100,000 soldiers士兵 previously先前.
57
152333
2952
假如你之前已经派遣了100000名士兵参加战斗。
02:51
So you see that because of the way we perceive感知 quantities数量,
58
155285
3613
因此你们会看到由于我们对数字的感觉是相对的,
02:54
as the war战争 drags拖动 on,
59
158898
1767
随着战争的延续,
02:56
the number of soldiers士兵 committed提交 to it and the casualties伤亡
60
160665
3085
参战士兵的数量及伤亡人数
02:59
will increase增加 not linearly线性 --
61
163750
1683
将不会线性地增加,
03:01
like 10,000, 11,000, 12,000 --
62
165433
1888
例如从10000到11000再到12000,
03:03
but exponentially成倍 -- 10,000, later后来 20,000, later后来 40,000.
63
167321
4275
而是呈指数增加的——起先是10000,之后是20000,再后来就成了40000。
03:07
And so that explains说明 this pattern模式 that we've我们已经 seen看到 before.
64
171596
3085
而这正好解释了我们之前看到的规律。
03:10
So here mathematics数学 is able能够 to link链接 a well-known知名 feature特征 of the individual个人 mind心神
65
174681
5498
这里数学能够将有关个体认知的常识
03:16
with a long-term长期 historical历史的 pattern模式
66
180179
2989
和长期的历史规律联系起来。
03:19
that unfolds展开 over centuries百年 and across横过 continents大陆.
67
183168
2857
这种历史规律可以延续数个世纪并在各个大洲有效。
03:21
So these types类型 of examples例子, today今天 there are just a few少数 of them,
68
186025
4017
今天我们只有有限的几个诸如此类的例子,
03:25
but I think in the next下一个 decade they will become成为 commonplace平凡.
69
190042
2689
但我认为在未来的十年间它们(用数学解释历史规律)会越来越多。
03:28
The reason原因 for that is that the historical历史的 record记录
70
192731
2392
而其原因则是历史记录
03:31
is becoming变得 digitized数字化 at a very fast快速 pace步伐.
71
195123
2460
正以非常快的速度被数字化存储。
03:33
So there's about 130 million百万 books图书
72
197583
2610
自人类的文明史发端至今
03:36
that have been written书面 since以来 the dawn黎明 of time.
73
200193
2311
我们大约拥有了1.3亿本不同的书。
03:38
Companies公司 like Google谷歌 have digitized数字化 many许多 of them --
74
202504
2454
而像谷歌这样的公司正致力于将其中很多书数字化存储
03:40
above以上 20 million百万 actually其实.
75
204958
1584
事实上被数字化的数量已经超过了2千万本。
03:42
And when the stuff东东 of history历史 is available可得到 in digital数字 form形成,
76
206542
3578
而当历史记录能以数字格式被存取的时候,
03:46
it makes品牌 it possible可能 for a mathematical数学的 analysis分析
77
210120
2380
回顾人类历史文化规律
03:48
to very quickly很快 and very conveniently便利地
78
212500
2375
的相关数学分析
03:50
review评论 trends趋势 in our history历史 and our culture文化.
79
214875
2725
会变得快捷而且方便。
03:53
So I think in the next下一个 decade,
80
217600
2721
因此我认为在接下来的十年,
03:56
the sciences科学 and the humanities人文 will come closer接近 together一起
81
220321
2750
自然科学和人文科学会更加紧密
03:58
to be able能够 to answer回答 deep questions问题 about mankind人类.
82
223071
3329
并能够解释有关人类的深层次问题。
04:02
And I think that mathematics数学 will be a very powerful强大 language语言 to do that.
83
226400
4121
我认为数学将会成为进行这项工作的有力工具。
04:06
It will be able能够 to reveal揭示 new trends趋势 in our history历史,
84
230521
3146
数学会帮助我们发现人类历史中的新规律,
04:09
sometimes有时 to explain说明 them,
85
233667
1750
有时也许可以解释某些规律,
04:11
and maybe even in the future未来 to predict预测 what's going to happen发生.
86
235417
3306
甚至在未来我们可以利用数学来预测将要发生的事情。
04:14
Thank you very much.
87
238723
1491
非常感谢大家。
04:16
(Applause掌声)
88
240214
3678
(掌声)
Translated by Zhixue Su
Reviewed by Zhenwei Huang

▲Back to top

ABOUT THE SPEAKER
Jean-Baptiste Michel - Data researcher
Jean-Baptiste Michel looks at how we can use large volumes of data to better understand our world.

Why you should listen

Jean-Baptiste Michel holds joint academic appointments at Harvard (FQEB Fellow) and Google (Visiting Faculty). His research focusses on using large volumes of data as tools that help better understand the world around us -- from the way diseases progress in patients over years, to the way cultures change in human societies over centuries. With his colleague Erez Lieberman Aiden, Jean-Baptiste is a Founding Director of Harvard's Cultural Observatory, where their research team pioneers the use of quantitative methods for the study of human culture, language and history. His research was featured on the covers of Science and Nature, on the front pages of the New York Times and the Boston Globe, in The Economist, Wired and many other venues. The online tool he helped create -- ngrams.googlelabs.com -- was used millions of times to browse cultural trends. Jean-Baptiste is an Engineer from Ecole Polytechnique (Paris), and holds an MS in Applied Mathematics and a PhD in Systems Biology from Harvard.

More profile about the speaker
Jean-Baptiste Michel | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee