ABOUT THE SPEAKER
Stephen Friend - Open-science advocate
Inspired by open-source software models, Sage Bionetworks co-founder Stephen Friend builds tools that facilitate research sharing on a massive and revolutionary scale.

Why you should listen

While working for Merck, Stephen Friend became frustrated by the slow pace at which big pharma created new treatments for desperate patients. Studying shared models like Wikipedia, Friend realized that the complexities of disease could only be understood -- and combated -- with collaboration and transparency, not by isolated scientists working in secret with proprietary data

In his quest for a solution, Friend co-founded Sage Bionetworks, an organization dedicated to creating strategies and platforms that empower researchers to share and interpret data on a colossal scale -- as well as crowdsource tests for new hypotheses.

As he wrote on CreativeCommons.org, "Our goal is ambitious. We want to take biology from a place where enclosure and privacy are the norm, where biologists see themselves as lone hunter-gatherers working to get papers written, to one where the knowledge is created specifically to fit into an open model where it can be openly queried and transformed."

More profile about the speaker
Stephen Friend | Speaker | TED.com
TED2014

Stephen Friend: The hunt for "unexpected genetic heroes"

斯蒂文.弗兰德: 猎寻“未知的遗传英雄”

Filmed:
1,017,016 views

我们从那些的了遗传性疾病的人那里获知了什么-再大部分遗传病中,只有部分的急停成员发生了疾病,而其他带有同样基因的却能避开它。斯蒂文.弗兰德建议我们应该开始研究那些没有得病的家庭成员。听听这个弹性课题,以巨大的努力来搜集基因资料可以帮助解码遗传性的失调。
- Open-science advocate
Inspired by open-source software models, Sage Bionetworks co-founder Stephen Friend builds tools that facilitate research sharing on a massive and revolutionary scale. Full bio

Double-click the English transcript below to play the video.

00:12
Approximately 30 years年份 ago,
0
602
2338
大约在30年以前,
00:14
when I was in oncology肿瘤科 at the Children's儿童 Hospital醫院
1
2940
2693
当我还在
00:17
in Philadelphia费城,
2
5633
1389
费城儿童医院的肿瘤科
00:19
a father父亲 and a son儿子 walked into my office办公室
3
7022
3154
一对父子走进我的办公室
00:22
and they both had their right eye missing失踪,
4
10176
3144
他们两人都没有了右眼,
00:25
and as I took the history历史, it became成为 apparent明显的
5
13320
2811
当我询问了病史,很明显
00:28
that the father父亲 and the son儿子 had a rare罕见 form形成
6
16131
2769
父亲和儿子都患有一种罕见形式的
00:30
of inherited遗传 eye tumor, retinoblastoma视网膜母细胞瘤,
7
18900
3542
遗传性的眼睛肿瘤,视网膜母细胞瘤,
00:34
and the father父亲 knew知道 that he had passed通过 that fate命运
8
22442
3114
父亲知道他把那种噩运
00:37
on to his son儿子.
9
25556
1875
传给了儿子。
00:39
That moment时刻 changed my life.
10
27431
2412
那个时刻改变了我的生活。
00:41
It propelled推进的 me to go on
11
29843
1904
它促使我去
00:43
and to co-lead共同领导 a team球队 that discovered发现
12
31747
3532
带领一个研究小组,并发现了
00:47
the first cancer癌症 susceptibility感受性 gene基因,
13
35279
3197
第一个肿瘤易感基因,
00:50
and in the intervening介入 decades几十年 since以来 then,
14
38476
2721
从那时介入起算的十年来,
00:53
there has been literally按照字面 a seismic地震 shift转移
15
41197
3420
我们在对肿瘤发生的研究上
00:56
in our understanding理解 of what goes on,
16
44617
2026
已经有了天翻地覆的进展
00:58
what genetic遗传 variations变化 are sitting坐在 behind背后
17
46643
2888
暨存在在各种各样的疾病背后
01:01
various各个 diseases疾病.
18
49531
1559
的基因变异。
01:03
In fact事实, for thousands数千 of human人的 traits性状,
19
51090
3384
事实上,数以万计的人类特征中,
01:06
a molecular分子 basis基础 that's known已知 for that,
20
54474
2218
就是那些已知的分子基础所决定,
01:08
and for thousands数千 of people, every一切 day,
21
56692
3295
对很多人来说,每天
01:11
there's information信息 that they gain获得
22
59987
2081
他们都获得很多信息
01:14
about the risk风险 of going on to get this disease疾病
23
62068
2442
关于得上这个
01:16
or that disease疾病.
24
64510
2226
或那个疾病的危险。
01:18
At the same相同 time, if you ask,
25
66736
2305
同时,如果你问,
01:21
"Has that impacted影响 the efficiency效率,
26
69041
2707
“那对效率有影响吗?”
01:23
how we've我们已经 been able能够 to develop发展 drugs毒品?"
27
71748
2092
我们如何能研发药物?“
01:25
the answer回答 is not really.
28
73840
1782
回答是不确定的。
01:27
If you look at the cost成本 of developing发展 drugs毒品,
29
75622
2330
如果你看看研发药物的花费
01:29
how that's doneDONE, it basically基本上 hasn't有没有 budged不为所动 that.
30
77952
3389
那是怎么做到的,还没有基本的预算。
01:33
And so it's as if we have the power功率 to diagnose诊断
31
81341
4473
那么,就像我们的确有能力来做出诊断
01:37
yet然而 not the power功率 to fully充分 treat对待.
32
85814
2812
但还美有能力来治愈。
01:40
And there are two commonly常用 given特定 reasons原因
33
88626
2466
至于缘何会出现这样的现象
01:43
for why that happens发生.
34
91092
1468
有两个常见的理由
01:44
One of them is it's early days.
35
92560
3472
其中之一是早期。
01:48
We're just learning学习 the words, the fragments片段,
36
96032
3590
我们刚刚学会,
01:51
the letters in the genetic遗传 code.
37
99622
1776
基因编码字母的只言片语
01:53
We don't know how to read the sentences句子.
38
101398
2155
我们不知道怎样阅读整段基因。
01:55
We don't know how to follow跟随 the narrative叙述.
39
103553
2570
我们不知道怎样理解它的叙述。
01:58
The other reason原因 given特定 is that
40
106123
2479
另一个现存的理由是
02:00
most of those changes变化 are a loss失利 of function功能,
41
108602
2218
大部分的基因变化是功能的缺失,
02:02
and it's actually其实 really hard to develop发展 drugs毒品
42
110820
2925
实际上很难通过发展药物
02:05
that restore恢复 function功能.
43
113745
1915
来重建功能。
02:07
But today今天, I want us to step back
44
115660
2182
但今天,我希望大家后退一步
02:09
and ask a more fundamental基本的 question,
45
117842
2028
问问更基本的问题,
02:11
and ask, "What happens发生 if we're thinking思维
46
119870
2189
再问,“如果我们关于这些的看法
02:14
about this maybe in the wrong错误 context上下文?"
47
122059
2733
是在错误的背景下,那么会发生什么呢?“
02:16
We do a lot of studying研究 of those who are sick生病
48
124792
3159
我们对那些生病的人做了很多研究
02:19
and building建造 up long lists名单
49
127951
2600
并且积攒了一个
02:22
of altered改变 components组件.
50
130551
3118
不同组成的长长的目录。
02:25
But maybe, if what we're trying to do
51
133669
2399
但也许,如果我们尝试去做的是
02:28
is to develop发展 therapies治疗 for prevention预防,
52
136068
3222
为了预防来发展治疗,
02:31
maybe what we should be doing
53
139290
1553
也许我们应该做的
02:32
is studying研究 those who don't get sick生病.
54
140843
2382
是研究那些没有生病的人。
02:35
Maybe we should be studying研究 those
55
143225
2347
也许我们应该研究那些
02:37
that are well.
56
145572
2175
健康的人。
02:39
A vast广大 majority多数 of those people
57
147747
1797
绝大部分的那些人
02:41
are not necessarily一定 carrying携带 a particular特定
58
149544
2336
也许没有承载一个特别的
02:43
genetic遗传 load加载 or risk风险 factor因子.
59
151880
1936
遗传累赘或者危险因子。
02:45
They're not going to help us.
60
153816
1984
他们对我们没有帮助。
02:47
There are going to be those individuals个人
61
155800
1599
他们将是那些
02:49
who are carrying携带 a potential潜在 future未来 risk风险,
62
157399
2669
带有潜在的会发病的危险因子
02:52
they're going to go on to get some symptom症状.
63
160068
1844
他们会有某些症状。
02:53
That's not what we're looking for.
64
161912
1788
那不是我们要找的。
02:55
What we're asking and looking for is,
65
163700
1848
我们要找的是,
02:57
are there a very few少数 set of individuals个人
66
165548
2770
只有很少的一组个体
03:00
who are actually其实 walking步行 around
67
168318
2836
那些没有发病的,
03:03
with the risk风险 that normally一般 would cause原因 a disease疾病,
68
171154
4019
但事实上有着能引起疾病的危险因子
03:07
but something in them, something hidden in them
69
175173
2963
在他们体内有某些东西,有某些东西藏在里面
03:10
is actually其实 protective保护的
70
178136
1834
事实上起着保护作用
03:11
and keeping保持 them from exhibiting参展 those symptoms症状?
71
179970
3175
使他们免于出现那些症状?
03:15
If you're going to do a study研究
like that, you can imagine想像
72
183145
2053
如果你要做那样一个研究,你能想像
03:17
you'd like to look at lots and lots of people.
73
185198
2832
你不得不去看看很多这样的人。
03:20
We'd星期三 have to go and have a pretty漂亮 wide study研究,
74
188030
3292
我们已经有了很大范围的研究,
03:23
and we realized实现 that actually其实
75
191322
1735
我们意识到事实上
03:25
one way to think of this is,
76
193057
1529
有一个思考的办法是,
03:26
let us look at adults成年人 who are over 40 years年份 of age年龄,
77
194586
4277
让我们看看四十岁以上的成年人,
03:30
and let's make sure that we look at those
78
198863
2970
让我们确定我们看着那些
03:33
who were healthy健康 as kids孩子.
79
201833
1480
像孩子一样健康的人。
03:35
They might威力 have had individuals个人 in their families家庭
80
203313
2402
在他们的家庭中,可能有某个人
03:37
who had had a childhood童年 disease疾病,
81
205715
1812
在孩提时有了病,
03:39
but not necessarily一定.
82
207527
1506
但也不一定。
03:41
And let's go and then screen屏幕 those
83
209033
2767
让我们到那些
03:43
to find those who are carrying携带 genes基因
84
211800
1993
人群里筛选,看谁携带着
03:45
for childhood童年 diseases疾病.
85
213793
1678
在儿童时就发病的基因。
03:47
Now, some of you, I can see you
86
215471
1564
现在,你们中的某些人,我能看见你们
03:49
putting your hands up going, "Uh, a little odd.
87
217035
3295
高举着手,“呵,有点古怪。
03:52
What's your evidence证据
88
220330
1417
你的证据呢
03:53
that this could be feasible可行?"
89
221747
1662
你能证明这是可行的吗?“
03:55
I want to give you two examples例子.
90
223409
2064
我想给你们两个例子。
03:57
The first comes from San Francisco弗朗西斯科.
91
225473
2948
第一个来自旧金山。
04:00
It comes from the 1980s and the 1990s,
92
228421
2941
在1980年和1990年之间,
04:03
and you may可能 know the story故事 where
93
231362
2394
你们也许知道
04:05
there were individuals个人 who had very high levels水平
94
233756
2397
那些个体有着很高水平的
04:08
of the virus病毒 HIVHIV.
95
236153
1268
艾滋病毒
04:09
They went on to get AIDS艾滋病.
96
237421
2479
他们后来得上了艾滋。
04:11
But there was a very small set of individuals个人
97
239900
2317
但有很少一组个体
04:14
who also had very high levels水平 of HIVHIV.
98
242217
2968
虽然有着很高的艾滋病毒水平
04:17
They didn't get AIDS艾滋病.
99
245185
1386
他们没有得病。
04:18
And astute精明 clinicians临床医生 tracked追踪 that down,
100
246571
2962
精明的临床医生追踪下去,
04:21
and what they found发现 was
they were carrying携带 mutations突变.
101
249533
3387
他们发现的是那些人携带着基因变异。
04:24
Notice注意, they were carrying携带 mutations突变 from birth分娩
102
252920
3085
注意,他们的变异是天生的。
04:28
that were protective保护的, that were protecting保护 them
103
256005
2015
那具有保护性,保护他们
04:30
from going on to get AIDS艾滋病.
104
258020
1641
不会得上艾滋病。
04:31
You may可能 also know that actually其实 a line线 of therapy治疗
105
259661
3165
你也许还知道有一个治疗流程
04:34
has been coming未来 along沿 based基于 on that fact事实.
106
262826
3120
根据这个事实而启动了。
04:37
Second第二 example, more recent最近, is elegant优雅 work
107
265946
3224
第二个例子,最近的,是由
04:41
doneDONE by Helen海伦 Hobbs霍布斯,
108
269170
1403
海伦.霍伯斯做的漂亮的工作,
04:42
who said, "I'm going to look at individuals个人
109
270573
2662
她说,“我会研究那些有
04:45
who have very high lipid油脂 levels水平,
110
273235
2716
着很高血脂水平的个体,
04:47
and I'm going to try to find those people
111
275951
1939
我会努力来发现这些
04:49
with high lipid油脂 levels水平
112
277890
1802
有着高血脂水平
04:51
who don't go on to get heart disease疾病."
113
279692
2168
但没有患心脏病的人。“
04:53
And again, what she found发现 was
114
281860
2438
再一次的,她发现的是
04:56
some of those individuals个人 had mutations突变
115
284298
2560
一些个体基因上有突变,
04:58
that were protective保护的 from birth分娩 that kept不停 them,
116
286858
2719
而那些天生的突变保护他们免于疾病,
05:01
even though虽然 they had high lipid油脂 levels水平,
117
289577
1445
尽管他们有着很高水平的血脂。
05:03
and you can see this is an interesting有趣 way
118
291022
3371
你能明白这是个有趣途径
05:06
of thinking思维 about how you could develop发展
119
294393
1961
它让你想到你怎样才能拓展出
05:08
preventive预防 therapies治疗.
120
296354
2260
预防性治疗。
05:10
The project项目 that we're working加工 on
121
298614
1944
我们在进行的项目是
05:12
is called "The Resilience弹性 Project项目:
122
300558
2462
叫做“弹性课题:
05:15
A Search搜索 for Unexpected意外 Heroes英雄,"
123
303020
1400
对未预料的英雄的研究,“
05:16
because what we are interested有兴趣 in doing is saying,
124
304420
2490
因为我们感兴趣做的是
05:18
can we find those rare罕见 individuals个人
125
306910
2648
我们能找到少见的
05:21
who might威力 have these hidden protective保护的 factors因素?
126
309558
4325
有着这种隐性的保护因子个体吗?
05:25
And in some ways方法, think of it as a decoder解码器 ring,
127
313883
2980
在某种意义上,把它当做解码器环,
05:28
a sort分类 of resilience弹性 decoder解码器 ring
128
316863
1926
是一种
05:30
that we're going to try to build建立.
129
318789
1632
我们尝试建造的具有弹性的解码器环。
05:32
We've我们已经 realized实现 that we should
do this in a systematic系统的 way,
130
320421
3849
我们已经意识到我们应该
系统性地尝试,
05:36
so we've我们已经 said, let's take every一切 single
131
324270
2627
我们已经说过,让我们拿每一个
05:38
childhood童年 inherited遗传 disease疾病.
132
326897
1243
儿童遗传病来研究。
05:40
Let's take them all, and let's
pull them back a little bit
133
328140
2564
让我们看着所有的人,让
我们把它们范围缩小一点点
05:42
by those that are known已知 to have severe严重 symptoms症状,
134
330704
3186
用那些
05:45
where the parents父母, the child儿童,
135
333890
1920
父母,孩子有着已知的严重的症状的病来说,
05:47
those around them would know
136
335810
1050
那些周围的人都知道
05:48
that they'd他们会 gotten得到 sick生病,
137
336860
1330
他们会生病,
05:50
and let's go ahead and then frame them again
138
338190
3700
让我们继续并且给他们再次定位
05:53
by those parts部分 of the genes基因 where we know
139
341890
2581
用我们已经知道的某些部分的基因
05:56
that there is a particular特定 alteration改造
140
344471
2507
那些有着特别改变而
05:58
that is known已知 to be highly高度 penetrant渗透剂
141
346978
2798
总所周知是引起
06:01
to cause原因 that disease疾病.
142
349776
2654
那种疾病的高度相关的基因。
06:04
Where are we going to look?
143
352430
1228
我们要看的是什么呢?
06:05
Well, we could look locally本地. That makes品牌 sense.
144
353658
2488
首先,我们可以局部地看,那很有道理。
06:08
But we began开始 to think, maybe we should look
145
356146
2261
然后我们想想,也许我们应该看看
06:10
all over the world世界.
146
358407
1451
全世界。
06:11
Maybe we should look not just here
147
359858
1653
也许我们应该看的不只是这儿
06:13
but in remote远程 places地方 where their might威力 be
148
361511
1960
而是在遥远的地方
06:15
a distinct不同 genetic遗传 context上下文,
149
363471
3030
可能有着独特的基因背景
06:18
there might威力 be environmental环境的 factors因素
150
366501
1642
也许是环境的因素
06:20
that protect保护 people.
151
368143
1382
保护者人们。
06:21
And let's look at a million百万 individuals个人.
152
369525
4462
让我们看一百万个体。
06:25
Now the reason原因 why we think it's a good time
153
373987
2970
我们认为现在是个很好的时候,
06:28
to do that now
154
376957
1072
理由是,现在
06:30
is, in the last couple一对 of years年份,
155
378029
1760
以及在过去的几年中,
06:31
there's been a remarkable卓越 plummeting直线下降 in the cost成本
156
379789
2588
做这种类型的分析,
06:34
to do this type类型 of analysis分析,
157
382377
2235
这种类型的数据推导,
06:36
this type类型 of data数据 generation,
158
384612
1739
在花费上有着显著的垂直的下降
06:38
to where it actually其实 costs成本 less to do
159
386351
2608
事实上
06:40
the data数据 generation and analysis分析
160
388959
2194
在数据推导和分析上的花费
06:43
than it does to do the sample样品
processing处理 and the collection采集.
161
391153
3184
少于标本的处理和收集。
06:46
The other reason原因 is that in the last five years年份,
162
394337
4304
在过去的五年中,另一个原因是,
06:50
there have been awesome真棒 tools工具,
163
398641
1964
有了特别棒的工具,
06:52
things about network网络 biology生物学, systems系统 biology生物学,
164
400605
2662
像联网生物学,系统生物学
06:55
that have come up that allow允许 us to think
165
403267
1961
发展起来后,可以让我们想到
06:57
that maybe we could decipher解码
166
405228
1940
也许我们可能解译
06:59
those positive outliers离群.
167
407168
2481
那些正性的结果。
07:01
And as we went around talking to researchers研究人员
168
409649
2172
当我们跟研究人员
07:03
and institutions机构
169
411821
1904
和研究所讨论
07:05
and telling告诉 them about our story故事,
170
413725
1569
并且告诉他们我们的故事,
07:07
something happened发生.
171
415294
1667
和那些发生的事情。
07:08
They started开始 saying, "This is interesting有趣.
172
416961
2229
他们开始说,“这有些意思,
07:11
I would be glad高兴 to join加入 your effort功夫.
173
419190
3347
我很高兴来跟你一起的努力,
07:14
I would be willing愿意 to participate参加."
174
422537
1927
我愿意参加。”
07:16
And they didn't say, "Where's哪里 the MTAMTA?"
175
424464
2579
他们并没有说,“MTA在哪里?”
07:19
They didn't say, "Where is my authorship作者?"
176
427043
3293
“他们没有说,”我的作者署名在哪里?“
07:22
They didn't say, "Is this data数据 going
to be mine? Am I going to own拥有 it?"
177
430336
4611
他们没有说,“这个结果是我的吗?
我是这个结果的主人吗?“
07:26
They basically基本上 said, "Let's work on this
178
434947
2279
他们只是说,”让我们
07:29
in an open打开, crowd-sourced众包, team球队 way
179
437226
2881
在一个开放的,有人群资源的,以合作的方法
07:32
to do this decoding解码."
180
440107
3074
来一起工作,解开这个难题。“
07:35
Six months个月 ago, we locked锁定 down
181
443181
2515
六个月之前,我们锁定了
07:37
the screening筛查 key for this decoder解码器.
182
445696
3315
这个难题的筛选关键。
07:41
My co-lead共同领导, a brilliant辉煌 scientist科学家, Eric埃里克 SchadtSchadt
183
449011
4578
我的同僚,一个非常聪明的科学家,诶瑞克.夏特
07:45
at the Icahn伊坎 Mount安装 Sinai西乃山
School学校 of Medicine医学 in New York纽约,
184
453589
3306
在纽约的爱肯蒙特塞纳医学院,
07:48
and his team球队,
185
456895
1392
他的小组
07:50
locked锁定 in that decoder解码器 key ring,
186
458287
2869
锁定了那个解码环的关键,
07:53
and we began开始 looking for samples样本,
187
461156
2395
我们开始寻找标本,
07:55
because what we realized实现 is,
188
463551
1486
因为我们意识到的是,
07:57
maybe we could just go and look
189
465037
1794
也许我们可以继续看
07:58
at some existing现有 samples样本 to
get some sense of feasibility可行性.
190
466831
3086
一些现存的标本来
得到某些。。
08:01
Maybe we could take two, three
percent百分 of the project项目 on,
191
469917
2577
也许我们能让项目有百分之二或三的进展,
08:04
and see if it was there.
192
472494
1417
看看它是否是我们想要的,
08:05
And so we started开始 asking people
193
473911
1998
于是我们开始请求一些人
08:07
such这样 as Hakon哈孔伯爵 at the Children's儿童 Hospital醫院 in Philadelphia费城.
194
475909
3537
比如费城儿童医院的哈空,
08:11
We asked Leif雷夫 up in Finland芬兰.
195
479446
2245
和远在芬兰的列夫。
08:13
We talked to Anne安妮 Wojcicki沃西基 at 23andMe和我,
196
481691
3673
我们跟诊所”23和我“的安.沃基次可
08:17
and Wang Jun at BGIBGI,
197
485364
1767
以及在BGI的王军也有了对话,
08:19
and again, something remarkable卓越 happened发生.
198
487131
2188
又一次,有了很显著的进展。
08:21
They said, "Huh,
199
489319
1809
他们说,”呵,
08:23
not only do we have samples样本,
200
491128
1744
我们不仅有标本,
08:24
but often经常 we've我们已经 analyzed分析 them,
201
492872
2196
而且我们还分析过,
08:27
and we would be glad高兴 to go into
202
495068
1487
我们很愿意来找出
08:28
our anonymized匿名 samples样本
203
496555
1403
我们那些匿名的标本,
08:29
and see if we could find those
204
497958
2062
看看我们是否能找到那些
08:32
that you're looking for."
205
500020
1163
你们在找的。“
08:33
And instead代替 of being存在 20,000 or 30,000,
206
501183
2707
上个月,我们
08:35
last month we passed通过 one half million百万 samples样本
207
503890
3152
有了过50十万的标本而不是2万或三万
08:39
that we've我们已经 already已经 analyzed分析.
208
507042
1905
我们已经分析过了这些标本。
08:40
So you must必须 be going,
209
508947
1493
那么,你肯定会说,
08:42
"Huh, did you find any unexpected意外 heroes英雄?"
210
510440
5625
“哈,你发现了那个未知的英雄了吗?”
08:48
And the answer回答 is, we didn't find one or two.
211
516065
2583
回答是肯定的。我们不是发现了一个或两个。
08:50
We found发现 dozens许多 of these strong强大 candidate候选人
212
518648
3038
我们发现了一打这样的
08:53
unexpected意外 heroes英雄.
213
521686
1729
作为未知的英雄的候选
08:55
So we think that the time is now
214
523415
2697
现在我们认为是时候
08:58
to launch发射 the beta公测 phase of this project项目
215
526112
2340
来进入这个项目的第二阶段
09:00
and actually其实 start开始 getting得到 prospective预期 individuals个人.
216
528452
3117
实际上是要得到那些有前景的个体。
09:03
Basically基本上 all we need is information信息.
217
531569
3171
我们基本上需要的就是信息。
09:06
We need a swab拖把 of DNA脱氧核糖核酸
218
534740
1659
我们需要一些DNA
09:08
and a willingness愿意 to say, "What's inside me?
219
536399
3405
和参与者自愿地说,“我里面有什么?”
09:11
I'm willing愿意 to be re-contacted再联络."
220
539804
3263
我愿意你们再跟我接触。“
09:15
Most of us spend our lives生活,
221
543067
3791
我们把自己的大部分生活
09:18
when it comes to health健康 and disease疾病,
222
546858
1954
花在健康和疾病上,
09:20
acting演戏 as if we're voyeurs偷窥.
223
548812
3080
好像做了偷窥者一样。
09:23
We delegate代表 the responsibility责任
224
551892
2337
我们有责任
09:26
for the understanding理解 of our disease疾病,
225
554229
2043
来弄懂我们的疾病,
09:28
for the treatment治疗 of our disease疾病,
226
556272
1872
以便来治疗我们的疾病,
09:30
to anointed experts专家.
227
558144
3536
成为在行的专家。
09:33
In order订购 for us to get this project项目 to work,
228
561680
3340
为了让这个项目可以运作,
09:37
we need individuals个人 to step up
229
565020
2150
我们需要个体站出来
09:39
in a different不同 role角色 and to be engaged订婚,
230
567170
3892
在各种角色上参与,
09:43
to realize实现 this dream梦想,
231
571062
2925
意识到这个梦想,
09:45
this open打开 crowd-sourced众包 project项目,
232
573987
3135
这个开放的人群资源项目,
09:49
to find those unexpected意外 heroes英雄,
233
577122
3680
是为了发现那些未知的英雄们。
09:52
to evolve发展 from the current当前 concepts概念
234
580802
2660
来更新现有概念
09:55
of resources资源 and constraints限制,
235
583462
2334
的来源和限制
09:57
to design设计 those preventive预防 therapies治疗,
236
585796
3251
来设计那些预防性的治疗,
10:01
and to extend延伸 it beyond childhood童年 diseases疾病,
237
589047
2773
并且能够延续和超越儿童时期发生的疾病,
10:03
to go all the way up to ways方法
238
591820
1577
一直上升到
10:05
that we could look at Alzheimer's老年痴呆症 or Parkinson's帕金森氏,
239
593397
3871
我们能够认识海尔滋莫或者巴金森氏疾病的高度,
10:09
we're going to need us
240
597268
2262
我们会需要我们
10:11
to be looking inside ourselves我们自己 and asking,
241
599530
3106
深入自己并且问
10:14
"What are our roles角色?
242
602636
2204
“我们的角色是什么?
10:16
What are our genes基因?"
243
604840
1673
我们的基因是什么?”
10:18
and looking within ourselves我们自己 for information信息
244
606513
2785
从我们自身来寻找信息
10:21
we used to say we should go to the outside,
245
609298
2642
我们常说我们应该走出去,
10:23
to experts专家,
246
611940
1208
去成为专家,
10:25
and to be willing愿意 to share分享 that with others其他.
247
613148
4052
愿意去跟人分享
10:29
Thank you very much.
248
617200
3558
非常感谢
10:32
(Applause掌声)
249
620758
1815
(鼓掌)。
Translated by Yuanqing Edberg
Reviewed by Kyle Li

▲Back to top

ABOUT THE SPEAKER
Stephen Friend - Open-science advocate
Inspired by open-source software models, Sage Bionetworks co-founder Stephen Friend builds tools that facilitate research sharing on a massive and revolutionary scale.

Why you should listen

While working for Merck, Stephen Friend became frustrated by the slow pace at which big pharma created new treatments for desperate patients. Studying shared models like Wikipedia, Friend realized that the complexities of disease could only be understood -- and combated -- with collaboration and transparency, not by isolated scientists working in secret with proprietary data

In his quest for a solution, Friend co-founded Sage Bionetworks, an organization dedicated to creating strategies and platforms that empower researchers to share and interpret data on a colossal scale -- as well as crowdsource tests for new hypotheses.

As he wrote on CreativeCommons.org, "Our goal is ambitious. We want to take biology from a place where enclosure and privacy are the norm, where biologists see themselves as lone hunter-gatherers working to get papers written, to one where the knowledge is created specifically to fit into an open model where it can be openly queried and transformed."

More profile about the speaker
Stephen Friend | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee