ABOUT THE SPEAKER
Stephen Friend - Open-science advocate
Inspired by open-source software models, Sage Bionetworks co-founder Stephen Friend builds tools that facilitate research sharing on a massive and revolutionary scale.

Why you should listen

While working for Merck, Stephen Friend became frustrated by the slow pace at which big pharma created new treatments for desperate patients. Studying shared models like Wikipedia, Friend realized that the complexities of disease could only be understood -- and combated -- with collaboration and transparency, not by isolated scientists working in secret with proprietary data

In his quest for a solution, Friend co-founded Sage Bionetworks, an organization dedicated to creating strategies and platforms that empower researchers to share and interpret data on a colossal scale -- as well as crowdsource tests for new hypotheses.

As he wrote on CreativeCommons.org, "Our goal is ambitious. We want to take biology from a place where enclosure and privacy are the norm, where biologists see themselves as lone hunter-gatherers working to get papers written, to one where the knowledge is created specifically to fit into an open model where it can be openly queried and transformed."

More profile about the speaker
Stephen Friend | Speaker | TED.com
TED2014

Stephen Friend: The hunt for "unexpected genetic heroes"

斯蒂芬·福蘭德: 挖掘潛藏的基因英雄

Filmed:
1,017,016 views

我們可以從因遺傳基因得病或沒得病的人身上知道些什麼?有著最具遺傳性的疾病,卻只有一些家族成員會發病,而帶著一樣基因的其他人卻逃過一劫。斯蒂芬·福蘭德建議我們開始研究那些依然健康的家族成員。聽聽看「恢復力計畫」是如何為了收集遺傳基因資料而耗費極大努力,而這計畫也許可以幫助解碼遺傳性疾病。
- Open-science advocate
Inspired by open-source software models, Sage Bionetworks co-founder Stephen Friend builds tools that facilitate research sharing on a massive and revolutionary scale. Full bio

Double-click the English transcript below to play the video.

00:12
Approximately 30 years年份 ago,
0
602
2338
大約是在三十年前
00:14
when I was in oncology腫瘤科 at the Children's兒童 Hospital醫院
1
2940
2693
當我還在費城一間兒童醫院的腫瘤科
00:17
in Philadelphia費城,
2
5633
1389
工作的時候
00:19
a father父親 and a son兒子 walked into my office辦公室
3
7022
3154
一位爸爸帶著兒子走進我的辦公室
00:22
and they both had their right eye missing失踪,
4
10176
3144
他們都失去了右眼
00:25
and as I took the history歷史, it became成為 apparent明顯的
5
13320
2811
在我翻查病歷之中,明顯發現
00:28
that the father父親 and the son兒子 had a rare罕見 form形成
6
16131
2769
父子倆都患有罕見形式的
00:30
of inherited遺傳 eye tumor, retinoblastoma視網膜母細胞瘤,
7
18900
3542
遺傳性眼瘤,視網膜母細胞瘤,
00:34
and the father父親 knew知道 that he had passed通過 that fate命運
8
22442
3114
爸爸知道是他將這個厄運
00:37
on to his son兒子.
9
25556
1875
傳給他兒子的。
00:39
That moment時刻 changed my life.
10
27431
2412
那一刻改變了我的人生。
00:41
It propelled推進的 me to go on
11
29843
1904
它鼓勵我繼續工作
00:43
and to co-lead共同領導 a team球隊 that discovered發現
12
31747
3532
並且去領導一個首先發現
00:47
the first cancer癌症 susceptibility感受性 gene基因,
13
35279
3197
癌症易感基因的團隊。
00:50
and in the intervening介入 decades幾十年 since以來 then,
14
38476
2721
從那時以來的幾十年之間,
00:53
there has been literally按照字面 a seismic地震 shift轉移
15
41197
3420
簡直是發生了一場巨變,
00:56
in our understanding理解 of what goes on,
16
44617
2026
對於我們所認知的一切,
00:58
what genetic遺傳 variations變化 are sitting坐在 behind背後
17
46643
2888
以及各種疾病背後所隱藏的
01:01
various各個 diseases疾病.
18
49531
1559
遺傳變異。
01:03
In fact事實, for thousands數千 of human人的 traits性狀,
19
51090
3384
事實上,數千個人類遺傳特徵
01:06
a molecular分子 basis基礎 that's known已知 for that,
20
54474
2218
是已知的分子基礎。
01:08
and for thousands數千 of people, every一切 day,
21
56692
3295
而對於數千個人,每一天,
01:11
there's information信息 that they gain獲得
22
59987
2081
他們都會得到
01:14
about the risk風險 of going on to get this disease疾病
23
62068
2442
關於患有此疾病或其他疾病
01:16
or that disease疾病.
24
64510
2226
風險的訊息
01:18
At the same相同 time, if you ask,
25
66736
2305
同時,如果你問道:
01:21
"Has that impacted影響 the efficiency效率,
26
69041
2707
「若它已經影響了功效,
01:23
how we've我們已經 been able能夠 to develop發展 drugs毒品?"
27
71748
2092
我們要怎麼做才能開發出新藥?」
01:25
the answer回答 is not really.
28
73840
1782
答案並不確定。
01:27
If you look at the cost成本 of developing發展 drugs毒品,
29
75622
2330
如果你去查看開發藥物的成本,
01:29
how that's doneDONE, it basically基本上 hasn't有沒有 budged不為所動 that.
30
77952
3389
以及它是如何完成的,
基本上它並無太大改變。
01:33
And so it's as if we have the power功率 to diagnose診斷
31
81341
4473
所以這就像是我們有能力去診斷,
01:37
yet然而 not the power功率 to fully充分 treat對待.
32
85814
2812
卻沒有能力去全力救治病人。
01:40
And there are two commonly常用 given特定 reasons原因
33
88626
2466
這裡有兩個常見的原因
01:43
for why that happens發生.
34
91092
1468
說明為什麼會有這種狀況發生 :
01:44
One of them is it's early days.
35
92560
3472
其一是,還在初期階段,
01:48
We're just learning學習 the words, the fragments片段,
36
96032
3590
我們才剛了解到遺傳密碼中的詞彙
01:51
the letters in the genetic遺傳 code.
37
99622
1776
片段還有字母。
01:53
We don't know how to read the sentences句子.
38
101398
2155
我們並不知道如何讀出整段句子,
01:55
We don't know how to follow跟隨 the narrative敘述.
39
103553
2570
我們也不知道怎麼接續整個故事。
01:58
The other reason原因 given特定 is that
40
106123
2479
另一個原因是
02:00
most of those changes變化 are a loss失利 of function功能,
41
108602
2218
大部分變化的發生是因為功能的喪失,
02:02
and it's actually其實 really hard to develop發展 drugs毒品
42
110820
2925
事實上,真的很難去開發
02:05
that restore恢復 function功能.
43
113745
1915
具有恢復功能的藥物。
02:07
But today今天, I want us to step back
44
115660
2182
但今天,我要大家退一步,
02:09
and ask a more fundamental基本的 question,
45
117842
2028
問一個更基本的問題,
02:11
and ask, "What happens發生 if we're thinking思維
46
119870
2189
「如果我們假想
02:14
about this maybe in the wrong錯誤 context上下文?"
47
122059
2733
這是在個前後關係錯誤的情況又會怎麼樣?」
02:16
We do a lot of studying研究 of those who are sick生病
48
124792
3159
我們對於那些生病的人做了很多研究,
02:19
and building建造 up long lists名單
49
127951
2600
也建立了一長串
02:22
of altered改變 components組件.
50
130551
3118
構成因素的列表。
02:25
But maybe, if what we're trying to do
51
133669
2399
但也許,若我們試著去做的
02:28
is to develop發展 therapies治療 for prevention預防,
52
136068
3222
是開發一種預防疾病的療法;
02:31
maybe what we should be doing
53
139290
1553
也許我們應該做的
02:32
is studying研究 those who don't get sick生病.
54
140843
2382
是去研究那些沒有生病的人;
02:35
Maybe we should be studying研究 those
55
143225
2347
也許我們真的該去研究那些
02:37
that are well.
56
145572
2175
健康的人。
02:39
A vast廣大 majority多數 of those people
57
147747
1797
這些人絕大多數
02:41
are not necessarily一定 carrying攜帶 a particular特定
58
149544
2336
未必攜帶著特定的
02:43
genetic遺傳 load加載 or risk風險 factor因子.
59
151880
1936
遺傳基因或危險因素。
02:45
They're not going to help us.
60
153816
1984
這樣的人不會幫到我們什麼。
02:47
There are going to be those individuals個人
61
155800
1599
但他們未來將會是
02:49
who are carrying攜帶 a potential潛在 future未來 risk風險,
62
157399
2669
潛在的高危險群
02:52
they're going to go on to get some symptom症狀.
63
160068
1844
他們很有機會得到一些症狀,
02:53
That's not what we're looking for.
64
161912
1788
但這也不是我們要找的。
02:55
What we're asking and looking for is,
65
163700
1848
我們正在尋找的是
02:57
are there a very few少數 set of individuals個人
66
165548
2770
有沒有少數的個體
03:00
who are actually其實 walking步行 around
67
168318
2836
在我們身邊活得好好的,
03:03
with the risk風險 that normally一般 would cause原因 a disease疾病,
68
171154
4019
事實上卻處在隨時
會患上各種疾病的風險中,
03:07
but something in them, something hidden in them
69
175173
2963
但某個東西在他們身體裡,隱藏在深處
03:10
is actually其實 protective保護的
70
178136
1834
實際上是具保護性的,
03:11
and keeping保持 them from exhibiting參展 those symptoms症狀?
71
179970
3175
並克制他們顯現出症狀?
03:15
If you're going to do a study研究
like that, you can imagine想像
72
183145
2053
如果你打算進行此類研究,你可以想像
03:17
you'd like to look at lots and lots of people.
73
185198
2832
你會想要研究好多好多人。
03:20
We'd星期三 have to go and have a pretty漂亮 wide study研究,
74
188030
3292
我們必須去實施一個特別廣泛的研究,
03:23
and we realized實現 that actually其實
75
191322
1735
並且我們發現事實上
03:25
one way to think of this is,
76
193057
1529
有一種思考方式可以告訴我們這是什麼
03:26
let us look at adults成年人 who are over 40 years年份 of age年齡,
77
194586
4277
讓我們先看看年過40的成人,
03:30
and let's make sure that we look at those
78
198863
2970
然後確保那些人
03:33
who were healthy健康 as kids孩子.
79
201833
1480
在孩提時代也是健康的。
03:35
They might威力 have had individuals個人 in their families家庭
80
203313
2402
在他們的家庭中也許有人
03:37
who had had a childhood童年 disease疾病,
81
205715
1812
曾經在幼年發病
03:39
but not necessarily一定.
82
207527
1506
但卻不是十分嚴重。
03:41
And let's go and then screen屏幕 those
83
209033
2767
讓我們去篩選那些
03:43
to find those who are carrying攜帶 genes基因
84
211800
1993
有攜帶兒童期疾病
03:45
for childhood童年 diseases疾病.
85
213793
1678
基因的人。
03:47
Now, some of you, I can see you
86
215471
1564
現在,我可以看到你們有些人
03:49
putting your hands up going, "Uh, a little odd.
87
217035
3295
手想要舉起來說:「蛤?這有點怪。
03:52
What's your evidence證據
88
220330
1417
你有什麼證據
03:53
that this could be feasible可行?"
89
221747
1662
可以證明這是可行的?」
03:55
I want to give you two examples例子.
90
223409
2064
我想給你們舉兩個例子。
03:57
The first comes from San Francisco弗朗西斯科.
91
225473
2948
第一個是發生在舊金山,
04:00
It comes from the 1980s and the 1990s,
92
228421
2941
1980 到 1990 年代這個時期,
04:03
and you may可能 know the story故事 where
93
231362
2394
你也許知道這個情況:
04:05
there were individuals個人 who had very high levels水平
94
233756
2397
曾經有些人被高水平的
04:08
of the virus病毒 HIVHIV.
95
236153
1268
人類免疫缺陷病毒(HIV)所感染,
04:09
They went on to get AIDS艾滋病.
96
237421
2479
他們接著患上了愛滋病。
04:11
But there was a very small set of individuals個人
97
239900
2317
但有少部分人
04:14
who also had very high levels水平 of HIVHIV.
98
242217
2968
同樣也有高水平的 HIV 病毒,
04:17
They didn't get AIDS艾滋病.
99
245185
1386
他們卻沒有得愛滋病。
04:18
And astute精明 clinicians臨床醫生 tracked追踪 that down,
100
246571
2962
機敏的臨床醫生追蹤下來,
04:21
and what they found發現 was
they were carrying攜帶 mutations突變.
101
249533
3387
發現他們身上帶有基因變異。
04:24
Notice注意, they were carrying攜帶 mutations突變 from birth分娩
102
252920
3085
注意!他們是自從出生就有此
04:28
that were protective保護的, that were protecting保護 them
103
256005
2015
保護作用的變異,
讓他們不至於得到愛滋。
04:30
from going on to get AIDS艾滋病.
104
258020
1641
04:31
You may可能 also know that actually其實 a line of therapy治療
105
259661
3165
你也許知道事實上有一連串治療
04:34
has been coming未來 along沿 based基於 on that fact事實.
106
262826
3120
是根據這事實而研發出來的。
04:37
Second第二 example, more recent最近, is elegant優雅 work
107
265946
3224
第二個較近來的例子,是個漂亮的工作
04:41
doneDONE by Helen海倫 Hobbs霍布斯,
108
269170
1403
由海倫·霍布斯完成。
04:42
who said, "I'm going to look at individuals個人
109
270573
2662
她說 : 「我要去研究那些
04:45
who have very high lipid油脂 levels水平,
110
273235
2716
高脂肪水平的人。
04:47
and I'm going to try to find those people
111
275951
1939
然後再從這些
04:49
with high lipid油脂 levels水平
112
277890
1802
高血脂水平的人裡面
04:51
who don't go on to get heart disease疾病."
113
279692
2168
找出沒有得到心臟疾病的人。」
04:53
And again, what she found發現 was
114
281860
2438
再一次,她也發現
04:56
some of those individuals個人 had mutations突變
115
284298
2560
在這之中的一些人也有變異,
04:58
that were protective保護的 from birth分娩 that kept不停 them,
116
286858
2719
也是從他們出生時就開始保護著他們,
05:01
even though雖然 they had high lipid油脂 levels水平,
117
289577
1445
儘管他們的脂肪水平很高。
05:03
and you can see this is an interesting有趣 way
118
291022
3371
各位可以看到這是個有趣的方式
05:06
of thinking思維 about how you could develop發展
119
294393
1961
去思考我們該如何發展出
05:08
preventive預防 therapies治療.
120
296354
2260
預防疾病的療法。
05:10
The project項目 that we're working加工 on
121
298614
1944
而現在我們正在做的計畫
05:12
is called "The Resilience彈性 Project項目:
122
300558
2462
叫做「恢復力計畫:
05:15
A Search搜索 for Unexpected意外 Heroes英雄,"
123
303020
1400
搜索潛藏的基因英雄。」
05:16
because what we are interested有興趣 in doing is saying,
124
304420
2490
因為我們感興趣的就是
05:18
can we find those rare罕見 individuals個人
125
306910
2648
我們是否能夠找到那些
可能擁有保護作用遺傳基因的少數人?
05:21
who might威力 have these hidden protective保護的 factors因素?
126
309558
4325
05:25
And in some ways方法, think of it as a decoder解碼器 ring,
127
313883
2980
在某些方面,想像它是個解碼環,
05:28
a sort分類 of resilience彈性 decoder解碼器 ring
128
316863
1926
一種我們正試著建立的
05:30
that we're going to try to build建立.
129
318789
1632
一個恢復力的解碼環。
05:32
We've我們已經 realized實現 that we should
do this in a systematic系統的 way,
130
320421
3849
我們已了解到必須有條理的方式去建立,
05:36
so we've我們已經 said, let's take every一切 single
131
324270
2627
所以就之前提過的,我們先來看每一個
05:38
childhood童年 inherited遺傳 disease疾病.
132
326897
1243
兒童期發病的遺傳性疾病。
05:40
Let's take them all, and let's
pull them back a little bit
133
328140
2564
我們先全部研究一遍,
退後一步,
05:42
by those that are known已知 to have severe嚴重 symptoms症狀,
134
330704
3186
透過那些嚴重症狀病患
05:45
where the parents父母, the child兒童,
135
333890
1920
身邊知道他們曾生病過的
05:47
those around them would know
136
335810
1050
父母、子女和其他人,
05:48
that they'd他們會 gotten得到 sick生病,
137
336860
1330
05:50
and let's go ahead and then frame them again
138
338190
3700
接著我們透過已知的
05:53
by those parts部分 of the genes基因 where we know
139
341890
2581
某些特定的世道交替原則,
05:56
that there is a particular特定 alteration改造
140
344471
2507
而得出有些變異位於
05:58
that is known已知 to be highly高度 penetrant滲透劑
141
346978
2798
有著很高遺傳機率的基因上
06:01
to cause原因 that disease疾病.
142
349776
2654
再去發展並表達出這些基因片段。
06:04
Where are we going to look?
143
352430
1228
我們會關注哪些地方?
06:05
Well, we could look locally本地. That makes品牌 sense.
144
353658
2488
我們可以從當地開始,這合乎情理。
06:08
But we began開始 to think, maybe we should look
145
356146
2261
但我們又想,也許我們應該關注
06:10
all over the world世界.
146
358407
1451
這整個世界。
06:11
Maybe we should look not just here
147
359858
1653
我們該關注的不只是在一個地方,
06:13
but in remote遠程 places地方 where their might威力 be
148
361511
1960
還有偏遠地區,
06:15
a distinct不同 genetic遺傳 context上下文,
149
363471
3030
那裡可能會有與其他不同的遺傳基因背景,
06:18
there might威力 be environmental環境的 factors因素
150
366501
1642
更有可能會有某些
06:20
that protect保護 people.
151
368143
1382
保護人們的環境因素。
06:21
And let's look at a million百萬 individuals個人.
152
369525
4462
讓我們來檢視一百萬個人。
06:25
Now the reason原因 why we think it's a good time
153
373987
2970
現在,我們覺得這時候
是這麼做的好時機,
06:28
to do that now
154
376957
1072
06:30
is, in the last couple一對 of years年份,
155
378029
1760
因為在過去的幾年,
06:31
there's been a remarkable卓越 plummeting直線下降 in the cost成本
156
379789
2588
從事此類型分析的花費、
06:34
to do this type類型 of analysis分析,
157
382377
2235
這數據生成類型的費用
06:36
this type類型 of data數據 generation,
158
384612
1739
明顯地暴跌。
06:38
to where it actually其實 costs成本 less to do
159
386351
2608
事實上數據生成以及分析
比樣本處理及收集
06:40
the data數據 generation and analysis分析
160
388959
2194
06:43
than it does to do the sample樣品
processing處理 and the collection採集.
161
391153
3184
花的錢還要少。
06:46
The other reason原因 is that in the last five years年份,
162
394337
4304
另一個原因是在最近五年裡
06:50
there have been awesome真棒 tools工具,
163
398641
1964
有很不錯的工具以及
06:52
things about network網絡 biology生物學, systems系統 biology生物學,
164
400605
2662
有關網路生物學、系統生物學的東西,
06:55
that have come up that allow允許 us to think
165
403267
1961
被發明出現來讓我們思考
06:57
that maybe we could decipher解碼
166
405228
1940
我們能夠解碼
06:59
those positive outliers離群.
167
407168
2481
這絕對異常值的可能性。
07:01
And as we went around talking to researchers研究人員
168
409649
2172
就當我們到處和研究人員
07:03
and institutions機構
169
411821
1904
及機構談話,
07:05
and telling告訴 them about our story故事,
170
413725
1569
告訴他們我們的故事,
07:07
something happened發生.
171
415294
1667
有件事發生了。
07:08
They started開始 saying, "This is interesting有趣.
172
416961
2229
他們進而開始說:「這真是有趣。
07:11
I would be glad高興 to join加入 your effort功夫.
173
419190
3347
我願意加入幫忙,
07:14
I would be willing願意 to participate參加."
174
422537
1927
我很樂意參與。」
07:16
And they didn't say, "Where's哪裡 the MTAMTA?"
175
424464
2579
他們並沒有問:「有醫療技術助理嗎? 」
07:19
They didn't say, "Where is my authorship作者?"
176
427043
3293
他們也沒有問:「我有沒有著作權? 」
07:22
They didn't say, "Is this data數據 going
to be mine? Am I going to own擁有 it?"
177
430336
4611
他們更沒有問:「這資料會不會是我的?我能夠擁有它嗎?
07:26
They basically基本上 said, "Let's work on this
178
434947
2279
他們基本上只說了:「我們就一起
07:29
in an open打開, crowd-sourced眾包, team球隊 way
179
437226
2881
用開放的、大眾資源、團隊的方式
07:32
to do this decoding解碼."
180
440107
3074
來解碼吧!」
07:35
Six months個月 ago, we locked鎖定 down
181
443181
2515
六個月前,我們鎖定了
07:37
the screening篩查 key for this decoder解碼器.
182
445696
3315
這解碼環的篩選鍵。
07:41
My co-lead共同領導, a brilliant輝煌 scientist科學家, Eric埃里克 SchadtSchadt
183
449011
4578
我的共同領導,艾里克沙特,一個出色的科學家,
07:45
at the Icahn伊坎 Mount安裝 Sinai西乃山
School學校 of Medicine醫學 in New York紐約,
184
453589
3306
在紐約的伊坎西奈山醫學院,
07:48
and his team球隊,
185
456895
1392
以及他的團隊,
07:50
locked鎖定 in that decoder解碼器 key ring,
186
458287
2869
鎖定了一個解碼環的鑰匙圈,
07:53
and we began開始 looking for samples樣本,
187
461156
2395
所以我們開始尋找樣本,
07:55
because what we realized實現 is,
188
463551
1486
因為我們了解到的是
07:57
maybe we could just go and look
189
465037
1794
也許我們可以直接去看
07:58
at some existing現有 samples樣本 to
get some sense of feasibility可行性.
190
466831
3086
那些存在的樣本,去發現一些可行性。
08:01
Maybe we could take two, three
percent百分 of the project項目 on,
191
469917
2577
也許這個計畫我們可以先做個兩三成
08:04
and see if it was there.
192
472494
1417
然後再看看可不可行。
08:05
And so we started開始 asking people
193
473911
1998
所以我們就開始詢問人們
08:07
such這樣 as Hakon哈孔伯爵 at the Children's兒童 Hospital醫院 in Philadelphia費城.
194
475909
3537
比如在費城兒童醫院的哈康主任、
08:11
We asked Leif雷夫 up in Finland芬蘭.
195
479446
2245
在芬蘭的雷夫、
08:13
We talked to Anne安妮 Wojcicki沃西基 at 23andMe和我,
196
481691
3673
基因技術公司 23andMe 的創辦人安妮.沃西基、
08:17
and Wang Jun at BGIBGI,
197
485364
1767
華大基因的王俊。
08:19
and again, something remarkable卓越 happened發生.
198
487131
2188
又一次,一些顯著的事情發生了。
08:21
They said, "Huh,
199
489319
1809
他們說:「哈,
08:23
not only do we have samples樣本,
200
491128
1744
我們不只有樣本,
08:24
but often經常 we've我們已經 analyzed分析 them,
201
492872
2196
我們還要去分析他們,
08:27
and we would be glad高興 to go into
202
495068
1487
我們很樂意去檢視
08:28
our anonymized匿名 samples樣本
203
496555
1403
匿名的樣本,
08:29
and see if we could find those
204
497958
2062
去看看我們能不能找到
08:32
that you're looking for."
205
500020
1163
你們正在找的東西。」
08:33
And instead代替 of being存在 20,000 or 30,000,
206
501183
2707
我們分析的樣本不只是兩、三萬而已,
08:35
last month we passed通過 one half million百萬 samples樣本
207
503890
3152
上個月我們已分析超過 50 萬。
08:39
that we've我們已經 already已經 analyzed分析.
208
507042
1905
08:40
So you must必須 be going,
209
508947
1493
所以你一定會說
08:42
"Huh, did you find any unexpected意外 heroes英雄?"
210
510440
5625
「嘿!你找到潛藏的基因英雄了嗎?」
08:48
And the answer回答 is, we didn't find one or two.
211
516065
2583
答案是,我們不只找到一、兩個。
08:50
We found發現 dozens許多 of these strong強大 candidate候選人
212
518648
3038
我們找到了許多個強大的
08:53
unexpected意外 heroes英雄.
213
521686
1729
基因英雄候選人。
08:55
So we think that the time is now
214
523415
2697
所以我們認為現在是時候
08:58
to launch發射 the beta公測 phase of this project項目
215
526112
2340
展開這個計劃的測試階段,
09:00
and actually其實 start開始 getting得到 prospective預期 individuals個人.
216
528452
3117
實際上也開始有了預期中的對象。
09:03
Basically基本上 all we need is information信息.
217
531569
3171
基本上我們所需要的是資訊。
09:06
We need a swab拖把 of DNA脫氧核糖核酸
218
534740
1659
我們需要棉棒來取樣基因,
09:08
and a willingness願意 to say, "What's inside me?
219
536399
3405
以及自願說出「我身體裡面有什麼?」
09:11
I'm willing願意 to be re-contacted再聯絡."
220
539804
3263
我願意再次得到聯繫。」
09:15
Most of us spend our lives生活,
221
543067
3791
當涉及到健康與疾病,
09:18
when it comes to health健康 and disease疾病,
222
546858
1954
我們大部分都為此傾注了心血
09:20
acting演戲 as if we're voyeurs偷窺.
223
548812
3080
表現地就像是偷窺狂一樣。
09:23
We delegate代表 the responsibility責任
224
551892
2337
我們將責任委託給
09:26
for the understanding理解 of our disease疾病,
225
554229
2043
能了解疾病、
09:28
for the treatment治療 of our disease疾病,
226
556272
1872
能治療疾病的
09:30
to anointed experts專家.
227
558144
3536
權威專家們。
09:33
In order訂購 for us to get this project項目 to work,
228
561680
3340
為了幫助我們讓計畫有所成效,
09:37
we need individuals個人 to step up
229
565020
2150
我們需要有人站出來
09:39
in a different不同 role角色 and to be engaged訂婚,
230
567170
3892
以一個不同的角色來參與,
09:43
to realize實現 this dream夢想,
231
571062
2925
去實現這個夢想,
09:45
this open打開 crowd-sourced眾包 project項目,
232
573987
3135
也需要這對外開放的大眾資源計畫
09:49
to find those unexpected意外 heroes英雄,
233
577122
3680
來找到那些潛藏的英雄們,
09:52
to evolve發展 from the current當前 concepts概念
234
580802
2660
從目前我們對資源與限制的概念
09:55
of resources資源 and constraints限制,
235
583462
2334
逐漸發展到
09:57
to design設計 those preventive預防 therapies治療,
236
585796
3251
發明出預防疾病的治療、
10:01
and to extend延伸 it beyond childhood童年 diseases疾病,
237
589047
2773
擴展範圍到兒童期疾病之外,
10:03
to go all the way up to ways方法
238
591820
1577
在整個過程中,我們可以發展到
10:05
that we could look at Alzheimer's老年癡呆症 or Parkinson's帕金森氏,
239
593397
3871
研究阿茲海默症及帕金森氏症,
10:09
we're going to need us
240
597268
2262
我們需要
10:11
to be looking inside ourselves我們自己 and asking,
241
599530
3106
捫心自問:
10:14
"What are our roles角色?
242
602636
2204
「我們的角色是什麼?
10:16
What are our genes基因?"
243
604840
1673
我們的基因是什麼?」
10:18
and looking within ourselves我們自己 for information信息
244
606513
2785
看看我們自己,想想以前
10:21
we used to say we should go to the outside,
245
609298
2642
我們常說應該到走到外面
10:23
to experts專家,
246
611940
1208
去找專家們,
10:25
and to be willing願意 to share分享 that with others其他.
247
613148
4052
然後樂意與人分享。
10:29
Thank you very much.
248
617200
3558
非常感謝各位。
10:32
(Applause掌聲)
249
620758
1815
(掌聲)
Translated by Li-jhen Tsai
Reviewed by Jonathan Zhang

▲Back to top

ABOUT THE SPEAKER
Stephen Friend - Open-science advocate
Inspired by open-source software models, Sage Bionetworks co-founder Stephen Friend builds tools that facilitate research sharing on a massive and revolutionary scale.

Why you should listen

While working for Merck, Stephen Friend became frustrated by the slow pace at which big pharma created new treatments for desperate patients. Studying shared models like Wikipedia, Friend realized that the complexities of disease could only be understood -- and combated -- with collaboration and transparency, not by isolated scientists working in secret with proprietary data

In his quest for a solution, Friend co-founded Sage Bionetworks, an organization dedicated to creating strategies and platforms that empower researchers to share and interpret data on a colossal scale -- as well as crowdsource tests for new hypotheses.

As he wrote on CreativeCommons.org, "Our goal is ambitious. We want to take biology from a place where enclosure and privacy are the norm, where biologists see themselves as lone hunter-gatherers working to get papers written, to one where the knowledge is created specifically to fit into an open model where it can be openly queried and transformed."

More profile about the speaker
Stephen Friend | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee