ABOUT THE SPEAKER
Robert Lang - Origamist
Robert Lang merges mathematics with aesthetics to fold elegant modern origami. His scientific approach helps him make folds once thought impossible -- and has secured his place as one of the first great Western masters of the art.

Why you should listen

Origami, as Robert Lang describes it, is simple: "You take a creature, you combine it with a square, and you get an origami figure." But Lang's own description belies the technicality of his art; indeed, his creations inspire awe by sheer force of their intricacy. His repertoire includes a snake with one thousand scales, a two-foot-tall allosaurus skeleton, and a perfect replica of a Black Forest cuckoo clock. Each work is the result of software (which Lang himself pioneered) that manipulates thousands of mathematical calculations in the production of a "folding map" of a single creature.

The marriage of mathematics and origami harkens back to Lang's own childhood.  As a first-grader, Lang proved far too clever for elementary mathematics and quickly became bored, prompting his teacher to give him a book on origami. His acuity for mathematics would lead him to become a physicist at the California Institute of Technology, and the owner of nearly fifty patents on lasers and optoelectronics. Now a professional origami master, Lang practices his craft as both artist and engineer, one day folding the smallest of insects and the next the largest of space-bound telescope lenses.

More profile about the speaker
Robert Lang | Speaker | TED.com
TED2008

Robert Lang: The math and magic of origami

罗伯特·朗的全新折纸

Filmed:
2,647,209 views

罗伯特·朗是最新折纸的先锋——运用数学与工程原理折出令人震撼的精致作品,不但漂亮而且有时非常实用。
- Origamist
Robert Lang merges mathematics with aesthetics to fold elegant modern origami. His scientific approach helps him make folds once thought impossible -- and has secured his place as one of the first great Western masters of the art. Full bio

Double-click the English transcript below to play the video.

00:18
My talk is "Flapping Birds鸟类 and Space空间 Telescopes望远镜."
0
0
3000
我演讲的题目是《展翅的鸟儿与太空望远镜》。
00:21
And you would think that should have nothing to do with one another另一个,
1
3000
2000
你会觉得他们相互之间没有联系,
00:23
but I hope希望 by the end结束 of these 18 minutes分钟,
2
5000
3000
但我希望在18分钟以后,
00:26
you'll你会 see a little bit of a relation关系.
3
8000
2000
你能看到一些关联。
00:29
It ties联系 to origami折纸. So let me start开始.
4
11000
1000
这与折纸有关。下面我就开始了。
00:30
What is origami折纸?
5
12000
2000
什么是折纸?
00:32
Most people think they know what origami折纸 is. It's this:
6
14000
3000
很多人以为他们知道折纸是什么。它是这样的:
00:35
flapping birds鸟类, toys玩具, cootie catchers捕手, that sort分类 of thing.
7
17000
3000
展翅的鸟儿、玩具、东西南北之类的东西。
00:38
And that is what origami折纸 used to be.
8
20000
2000
折纸术以前是这样的。
00:40
But it's become成为 something else其他.
9
22000
2000
但它已经改变了。
00:42
It's become成为 an art艺术 form形成, a form形成 of sculpture雕塑.
10
24000
2000
它已经成为了一种艺术形式,一种雕塑形式。
00:44
The common共同 theme主题 -- what makes品牌 it origami折纸 --
11
26000
2000
共同的主题——折纸术的本质——
00:46
is folding折页 is how we create创建 the form形成.
12
28000
4000
是折叠,也是我们如何创造形态的。
00:50
You know, it's very old. This is a plate盘子 from 1797.
13
32000
3000
你们知道,这非常古老。这是1797年的一幅画。
00:53
It shows节目 these women妇女 playing播放 with these toys玩具.
14
35000
2000
上面是这些妇女们玩纸玩具的场景。
00:55
If you look close, it's this shape形状, called a crane起重机.
15
37000
3000
如果你靠近点看,它是这种形状的,叫做鹤。
00:58
Every一切 Japanese日本 kid孩子
16
40000
2000
每个日本孩子
01:00
learns获悉 how to fold that crane起重机.
17
42000
2000
都学折纸鹤。
01:02
So this art艺术 has been around for hundreds数以百计 of years年份,
18
44000
2000
所以这种艺术已经存在了数百年,
01:04
and you would think something
19
46000
2000
你可能会想如果某种东西
01:06
that's been around that long -- so restrictive限制, folding折页 only --
20
48000
3000
已经存在了这么久——如此有限制性,只能折叠——
01:09
everything that could be doneDONE has been doneDONE a long time ago.
21
51000
3000
那么所有能做出的东西应该在很久以前就做出来了。
01:12
And that might威力 have been the case案件.
22
54000
2000
实际情况也许会是如此。
01:14
But in the twentieth第二十 century世纪,
23
56000
2000
但在20世纪,
01:16
a Japanese日本 folder named命名 Yoshizawa吉泽 came来了 along沿,
24
58000
3000
一位名为吉泽的日本折纸艺术家出现了,
01:19
and he created创建 tens of thousands数千 of new designs设计.
25
61000
3000
他创造出了数万种全新的设计。
01:22
But even more importantly重要的, he created创建 a language语言,
26
64000
3000
更重要的是,他创造了一种语言——
01:25
a way we could communicate通信,
27
67000
2000
一种我们可以交流的方式,
01:27
a code of dots, dashes破折号 and arrows箭头.
28
69000
2000
一种由点、破折号和箭头构成的代码。
01:29
HarkeningHarkening back to Susan苏珊 Blackmore's布莱克莫尔的 talk,
29
71000
2000
联系到苏珊·布莱克摩尔的演讲,
01:31
we now have a means手段 of transmitting发射 information信息
30
73000
2000
我们现在有了一种通过传承与选择
01:33
with heredity遗传 and selection选择,
31
75000
3000
传递信息的方法,
01:36
and we know where that leads引线.
32
78000
2000
我们也知道它的走向。
01:38
And where it has led in origami折纸
33
80000
2000
而它在折纸术中产生的
01:40
is to things like this.
34
82000
2000
是这样的东西。
01:42
This is an origami折纸 figure数字 --
35
84000
2000
这是一个折纸作品:
01:44
one sheet, no cuts削减, folding折页 only, hundreds数以百计 of folds褶皱.
36
86000
4000
一张纸,没有裁剪,只有折叠,数百次折叠。
01:50
This, too, is origami折纸,
37
92000
2000
而这也是折纸,
01:52
and this shows节目 where we've我们已经 gone走了 in the modern现代 world世界.
38
94000
3000
它显示出我们在现代世界中的已经走到哪了。
01:55
Naturalism自然主义. Detail详情.
39
97000
2000
自然主义。细节。
01:57
You can get horns牛角, antlers鹿角 --
40
99000
2000
你可以做出犄角,鹿角——
01:59
even, if you look close, cloven hooves.
41
101000
2000
如果你靠近看,偶蹄。
02:01
And it raises加薪 a question: what changed?
42
103000
3000
这就引出一个问题:什么发生了改变?
02:04
And what changed is something
43
106000
2000
发生变化的是一种
02:06
you might威力 not have expected预期 in an art艺术,
44
108000
3000
你在艺术中可能不曾期待的东西,
02:09
which哪一个 is math数学.
45
111000
2000
那就是数学。
02:11
That is, people applied应用的 mathematical数学的 principles原则
46
113000
2000
也就是说,人们将数学原理应用
02:13
to the art艺术,
47
115000
3000
到艺术中,
02:16
to discover发现 the underlying底层 laws法律.
48
118000
2000
来发现潜在的规律。
02:18
And that leads引线 to a very powerful强大 tool工具.
49
120000
3000
这就形成了一种强大的工具。
02:21
The secret秘密 to productivity生产率 in so many许多 fields领域 --
50
123000
2000
在众多领域提高生产力的秘密——
02:23
and in origami折纸 --
51
125000
2000
包括在折纸术中——
02:25
is letting出租 dead people do your work for you.
52
127000
3000
是让死去的人为你工作。
02:28
(Laughter笑声)
53
130000
1000
(笑声)
02:29
Because what you can do is
54
131000
2000
因为你所能做的
02:31
take your problem问题,
55
133000
2000
是将你的问题
02:33
and turn it into a problem问题 that someone有人 else其他 has solved解决了,
56
135000
3000
转变成一个其他人已经解决的问题,
02:36
and use their solutions解决方案.
57
138000
2000
并运用他们的解决方法。
02:38
And I want to tell you how we did that in origami折纸.
58
140000
3000
而我想要告诉你们,我们是如何在折纸术中做到这一点的。
02:41
Origami折纸 revolves围绕 around crease patterns模式.
59
143000
2000
折纸术是围绕折痕图进行的。
02:43
The crease pattern模式 shown显示 here is the underlying底层 blueprint蓝图
60
145000
2000
这个折痕图就是一个折纸造型
02:46
for an origami折纸 figure数字.
61
148000
2000
的设计图
02:48
And you can't just draw them arbitrarily任意.
62
150000
2000
设计图可不能随便画。
02:50
They have to obey遵守 four simple简单 laws法律.
63
152000
3000
它们必须遵循4个简单的规则。
02:53
And they're very simple简单, easy简单 to understand理解.
64
155000
2000
它们非常简单,并且很好理解。
02:55
The first law is two-colorability二着色. You can color颜色 any crease pattern模式
65
157000
3000
第一个规则是双可着色性。你可以用两种颜色
02:58
with just two colors颜色 without ever having
66
160000
2000
填充你想画的的折痕图而
03:00
the same相同 color颜色 meeting会议.
67
162000
3000
相同的颜色不会相邻。
03:03
The directions方向 of the folds褶皱 at any vertex顶点 --
68
165000
3000
在任何顶点的折叠方向--
03:06
the number of mountain folds褶皱, the number of valley folds褶皱 --
69
168000
3000
凸折法的数量,凹折法的数量--
03:09
always differs不同 by two. Two more or two less.
70
171000
2000
之间总是相差两下。多折或少折两下。
03:11
Nothing else其他.
71
173000
2000
就这么简单。
03:13
If you look at the angles around the fold,
72
175000
2000
如果观察折痕周围的角,
03:15
you find that if you number the angles in a circle,
73
177000
2000
你会发现在数围成一圈的角时,
03:17
all the even-numbered偶数 angles add up to a straight直行 line线,
74
179000
3000
所有列为偶数的角加起来是一条直线。
03:20
all the odd-numbered奇数的 angles add up to a straight直行 line线.
75
182000
3000
所有列为奇数的角加起来是一个直线。
03:23
And if you look at how the layers stack,
76
185000
2000
接下来,如果观察这些纸是怎么叠加起来的,
03:25
you'll你会 find that no matter how you stack folds褶皱 and sheets床单,
77
187000
3000
你会发现不论怎样叠加褶层和纸片,
03:28
a sheet can never
78
190000
2000
纸片永远不能
03:30
penetrate穿透 a fold.
79
192000
2000
穿透褶层。
03:32
So that's four simple简单 laws法律. That's all you need in origami折纸.
80
194000
3000
这就是四则简单的规则。在折纸艺术中这就是全部。
03:35
All of origami折纸 comes from that.
81
197000
2000
所有的折纸都源于这些。
03:37
And you'd think, "Can four simple简单 laws法律
82
199000
2000
现在你觉得:“那些复杂的工艺
03:39
give rise上升 to that kind of complexity复杂?"
83
201000
2000
能是从四则简单的规则中衍生出来的吗?”
03:41
But indeed确实, the laws法律 of quantum量子 mechanics机械学
84
203000
2000
但是,事实上,量子力学的法则
03:43
can be written书面 down on a napkin餐巾,
85
205000
2000
可以在一张餐巾纸上写出来。
03:45
and yet然而 they govern治理 all of chemistry化学,
86
207000
2000
而它们可以支配所有的化学,
03:47
all of life, all of history历史.
87
209000
2000
甚至生活和历史的全部。
03:49
If we obey遵守 these laws法律,
88
211000
2000
如果遵循这些规则,
03:51
we can do amazing惊人 things.
89
213000
2000
我们能做出令人吃惊的事。
03:53
So in origami折纸, to obey遵守 these laws法律,
90
215000
2000
所以折纸时,在遵循这些规则的情况下,
03:55
we can take simple简单 patterns模式 --
91
217000
2000
我们可以做出简单的样式--
03:57
like this repeating重复 pattern模式 of folds褶皱, called textures纹理 --
92
219000
3000
比如这个重复的折叠样式,叫做纹理--
04:00
and by itself本身 it's nothing.
93
222000
2000
虽然这样单独看起来很普通。
04:02
But if we follow跟随 the laws法律 of origami折纸,
94
224000
2000
但如果我们遵守折纸的规则,
04:04
we can put these patterns模式 into another另一个 fold
95
226000
3000
我们能把这些样式加入另一种折法,
04:07
that itself本身 might威力 be something very, very simple简单,
96
229000
2000
这种折法本身非常非常的简单。
04:09
but when we put it together一起,
97
231000
2000
但当我们把它加进来,
04:11
we get something a little different不同.
98
233000
2000
会得到很不一样的东西。
04:13
This fish, 400 scales --
99
235000
3000
这条鱼有400片鱼鳞,
04:16
again, it is one uncut完整无缺 square广场, only folding折页.
100
238000
3000
同样,它是一张没被剪过的正方形纸张。
04:20
And if you don't want to fold 400 scales,
101
242000
2000
如果你不想折400片鱼鳞,
04:22
you can back off and just do a few少数 things,
102
244000
2000
你可以退而求其次,做些简单的折叠
04:24
and add plates to the back of a turtle, or toes脚趾.
103
246000
3000
得到一只乌龟的背壳或脚趾。
04:27
Or you can ramp舷梯 up and go up to 50 stars明星
104
249000
3000
或者可以提升成为一面拥有
04:30
on a flag, with 13 stripes条纹.
105
252000
3000
50颗星星和13条横条的旗子(美国国旗)。
04:33
And if you want to go really crazy,
106
255000
3000
如果你想做些疯狂的事情,
04:36
1,000 scales on a rattlesnake响尾蛇.
107
258000
2000
这有一条有1000片鳞片的响尾蛇。
04:38
And this guy's家伙 on display显示 downstairs楼下,
108
260000
2000
这个作品展示在楼下,
04:40
so take a look if you get a chance机会.
109
262000
3000
所以你们有机会可以看看。
04:43
The most powerful强大 tools工具 in origami折纸
110
265000
2000
在折纸艺术中,最有用的方法
04:45
have related有关 to how we get parts部分 of creatures生物.
111
267000
3000
和我们怎样构造生物的一部分有关。
04:48
And I can put it in this simple简单 equation方程.
112
270000
2000
我可以用一个简单的等式来解释。
04:50
We take an idea理念,
113
272000
2000
我们产生了一个想法,
04:52
combine结合 it with a square广场, and you get an origami折纸 figure数字.
114
274000
3000
把它与张纸片结合,就能得到一个折纸作品。
04:55
(Laughter笑声)
115
277000
4000
(笑声)
04:59
What matters事项 is what we mean by those symbols符号.
116
281000
2000
重要的是这些符号代表什么。
05:01
And you might威力 say, "Can you really be that specific具体?
117
283000
3000
你们可能会问:“真的能做到那么具体吗?
05:04
I mean, a stag beetle甲虫 -- it's got two points for jaws,
118
286000
2000
我是说一只鹿角虫有两个点状的嘴,
05:06
it's got antennae天线. Can you be that specific具体 in the detail详情?"
119
288000
4000
和触角。你真的能做到具体到细节吗?”
05:10
And yeah, you really can.
120
292000
3000
是的,真的可以。
05:13
So how do we do that? Well, we break打破 it down
121
295000
3000
那该怎么做呢?我们把它分成
05:16
into a few少数 smaller steps脚步.
122
298000
2000
几个小步骤。
05:18
So let me stretch伸展 out that equation方程.
123
300000
2000
为此,让我来展开这个等式。
05:20
I start开始 with my idea理念. I abstract抽象 it.
124
302000
3000
我先从我的构思开始,使它抽象化。
05:23
What's the most abstract抽象 form形成? It's a stick figure数字.
125
305000
3000
什么是最抽象的形式呢?线条画。
05:26
And from that stick figure数字, I somehow不知何故 have to get to a folded折叠 shape形状
126
308000
3000
然后从这个线条画,我得用某种方式得到折叠的式样,
05:29
that has a part部分 for every一切 bit of the subject学科,
127
311000
3000
并且包括想要表现对象的所有部分。
05:32
a flap拍打 for every一切 leg.
128
314000
2000
一片三角形折叠对应一条腿。
05:34
And then once一旦 I have that folded折叠 shape形状 that we call the base基础,
129
316000
3000
然后,我们称这个折叠的式样为基础。
05:37
you can make the legs narrower, you can bend弯曲 them,
130
319000
3000
你可以使它的腿变细,使其弯曲,
05:40
you can turn it into the finished shape形状.
131
322000
2000
你可以把它做成成品。
05:42
Now the first step, pretty漂亮 easy简单.
132
324000
2000
第一步:很简单。
05:44
Take an idea理念, draw a stick figure数字.
133
326000
2000
做出一个构思,画一幅线条图。
05:46
The last step is not so hard, but that middle中间 step --
134
328000
3000
最后一步也不是很难,但中间的一步--
05:49
going from the abstract抽象 description描述 to the folded折叠 shape形状 --
135
331000
3000
把抽象的描绘变为折叠的式样--
05:52
that's hard.
136
334000
2000
这很难。
05:54
But that's the place地点 where the mathematical数学的 ideas思路
137
336000
2000
但就是在这,数学理论让我们
05:56
can get us over the hump驼峰.
138
338000
2000
翻越难关。
05:58
And I'm going to show显示 you all how to do that
139
340000
2000
我要向你们展示怎样做,
06:00
so you can go out of here and fold something.
140
342000
2000
这样离开这里后,你们可以叠出些东西。
06:02
But we're going to start开始 small.
141
344000
2000
但我们要先从小的开始。
06:04
This base基础 has a lot of flaps襟翼 in it.
142
346000
2000
这个基础有很多片状物。
06:06
We're going to learn学习 how to make one flap拍打.
143
348000
3000
我们要学习怎样做一个片状物。
06:09
How would you make a single flap拍打?
144
351000
2000
你会怎样叠一个片状物呢?
06:11
Take a square广场. Fold it in half, fold it in half, fold it again,
145
353000
3000
拿一张正方形的纸,把它对折再对折,
06:14
until直到 it gets得到 long and narrow狭窄,
146
356000
2000
直到它变得又长又细,
06:16
and then we'll say at the end结束 of that, that's a flap拍打.
147
358000
2000
然后这个的尾部就是一个片状物。
06:18
I could use that for a leg, an arm, anything like that.
148
360000
3000
我能用它做一条腿,一只手臂,和所有相似的东西。
06:21
What paper went into that flap拍打?
149
363000
2000
在片状物中是什么样的纸呢?
06:23
Well, if I unfold展开 it and go back to the crease pattern模式,
150
365000
2000
如果把它展开去看它的折痕图,
06:25
you can see that the upper left corner of that shape形状
151
367000
3000
你们可以看到在纸片的左上角的形状
06:28
is the paper that went into the flap拍打.
152
370000
2000
就是构成片状物的纸。
06:30
So that's the flap拍打, and all the rest休息 of the paper's文件 left over.
153
372000
3000
所以那就是一个片状物,和所有剩下的纸。
06:33
I can use it for something else其他.
154
375000
2000
我可以用剩下的部分做点别的。
06:35
Well, there are other ways方法 of making制造 a flap拍打.
155
377000
2000
也有另外的做片状物的方法。
06:37
There are other dimensions尺寸 for flaps襟翼.
156
379000
2000
也有不同形状的片状物。
06:39
If I make the flaps襟翼 skinnier, I can use a bit less paper.
157
381000
3000
如果把片状物叠得更细一些,所用的纸会更少。
06:42
If I make the flap拍打 as skinny枯瘦 as possible可能,
158
384000
3000
如果把片状物尽可能的叠细,
06:45
I get to the limit限制 of the minimum最低限度 amount of paper needed需要.
159
387000
3000
就能只用片状物所需的最少的纸。
06:48
And you can see there, it needs需求 a quarter-circle四分之一圆 of paper to make a flap拍打.
160
390000
3000
就像你们所看到的,只需要纸上四分之一个圆就可以作出一个片状物。
06:52
There's other ways方法 of making制造 flaps襟翼.
161
394000
2000
还有别的做片状物的方法。
06:54
If I put the flap拍打 on the edge边缘, it uses使用 a half circle of paper.
162
396000
3000
如果把片状物放在纸片边上,就需要一个半圆的纸。
06:57
And if I make the flap拍打 from the middle中间, it uses使用 a full充分 circle.
163
399000
3000
如果把片状物放在纸片的中心,就需要一整圆。
07:00
So, no matter how I make a flap拍打,
164
402000
2000
就是说不论怎样叠,
07:02
it needs需求 some part部分
165
404000
2000
片状物是由
07:04
of a circular region地区 of paper.
166
406000
2000
纸上圆形区域的一部分做成的。
07:06
So now we're ready准备 to scale规模 up.
167
408000
2000
现在让我们来提升到新的水平。
07:08
What if I want to make something that has a lot of flaps襟翼?
168
410000
3000
如果要叠一个有很多片状物的东西该怎么办呢?
07:11
What do I need? I need a lot of circles.
169
413000
3000
我需要什么?我需要很多的圆。
07:15
And in the 1990s,
170
417000
2000
在二十世纪九十年代,
07:17
origami折纸 artists艺术家 discovered发现 these principles原则
171
419000
2000
折纸艺术家发现了这些规则,
07:19
and realized实现 we could make arbitrarily任意 complicated复杂 figures人物
172
421000
3000
并了解到我们可以通过组合圆形
07:22
just by packing填料 circles.
173
424000
3000
来叠出任意复杂的形状。
07:25
And here's这里的 where the dead people start开始 to help us out,
174
427000
3000
这就是那些死去的人能帮到我们的地方。
07:28
because lots of people have studied研究
175
430000
3000
因为很多人都研究过
07:31
the problem问题 of packing填料 circles.
176
433000
2000
组合圆形的问题。
07:33
I can rely依靠 on that vast广大 history历史 of mathematicians数学家 and artists艺术家
177
435000
3000
我可以依赖那些有关圆的组合和排列的
07:36
looking at disc圆盘 packings填料 and arrangements安排.
178
438000
3000
大量的数学与艺术的历史。
07:39
And I can use those patterns模式 now to create创建 origami折纸 shapes形状.
179
441000
3000
然后我可以用这些式样来制造折纸的形状。
07:43
So we figured想通 out these rules规则 whereby因此 you pack circles,
180
445000
2000
我们可以依据这些规则来组合圆形,
07:45
you decorate装饰 the patterns模式 of circles with lines线
181
447000
3000
依据更多的规矩我们可以
07:48
according根据 to more rules规则. That gives you the folds褶皱.
182
450000
2000
用线条来装饰圆。这就有了折叠线。
07:50
Those folds褶皱 fold into a base基础. You shape形状 the base基础.
183
452000
3000
沿这些线折叠就可以得到大体形状。你们就做出了大体的形状。
07:53
You get a folded折叠 shape形状 -- in this case案件, a cockroach蟑螂.
184
455000
3000
你们得到一个折叠的形状,在这里,是一只蟑螂。
07:57
And it's so simple简单.
185
459000
2000
而且它非常的简单。
07:59
(Laughter笑声)
186
461000
3000
(笑声)
08:02
It's so simple简单 that a computer电脑 could do it.
187
464000
3000
因为它很简单,电脑就可以把它做出来。
08:05
And you say, "Well, you know, how simple简单 is that?"
188
467000
2000
你们可能问“那能有多简单呢?”
08:07
But computers电脑 -- you need to be able能够 to describe描述 things
189
469000
2000
但是要用电脑,你们需要用最基本的方法
08:09
in very basic基本 terms条款, and with this, we could.
190
471000
3000
来描述一件事物。而这里我们可以做到。
08:12
So I wrote a computer电脑 program程序 a bunch of years年份 ago
191
474000
2000
所以我在很多年前写了一个电脑程序,
08:14
called TreeMakerTreeMaker, and you can download下载 it from my website网站.
192
476000
2000
叫做TreeMaker(造树者),你们可以在我的网页上下载它。
08:16
It's free自由. It runs运行 on all the major重大的 platforms平台 -- even Windows视窗.
193
478000
3000
它是免费的。它可以在大部分的操作系统里面运行,甚至在Windows里。
08:19
(Laughter笑声)
194
481000
2000
(笑声)
08:21
And you just draw a stick figure数字,
195
483000
2000
然后你们就可以自己画一个线条图,
08:23
and it calculates计算 the crease pattern模式.
196
485000
2000
这个程序会根据线条图计算折痕。
08:25
It does the circle packing填料, calculates计算 the crease pattern模式,
197
487000
3000
这个程序可以排列圆形,计算折痕,
08:28
and if you use that stick figure数字 that I just showed显示 --
198
490000
2000
还有如果你们用刚才我展示的线条图,
08:30
which哪一个 you can kind of tell, it's a deer鹿, it's got antlers鹿角 --
199
492000
3000
你们可以看出它是一只有角的鹿,
08:33
you'll你会 get this crease pattern模式.
200
495000
2000
你们就可以得到这个折痕图。
08:35
And if you take this crease pattern模式, you fold on the dotted lines线,
201
497000
2000
用这个折痕图,折叠有虚线的地方,
08:37
you'll你会 get a base基础 that you can then shape形状
202
499000
3000
你们就能得到一个基础,然后再用
08:40
into a deer鹿,
203
502000
2000
你们想用的方法
08:42
with exactly究竟 the crease pattern模式 that you wanted.
204
504000
2000
叠出一只鹿。
08:44
And if you want a different不同 deer鹿,
205
506000
2000
如果你们想要一只不同种的鹿,
08:46
not a white-tailed白尾 deer鹿, but you want a mule马骡 deer鹿, or an elk麋鹿,
206
508000
3000
而不是白尾鹿,
08:49
you change更改 the packing填料,
207
511000
2000
你们可以改变圆形的排列,
08:51
and you can do an elk麋鹿.
208
513000
2000
然后得到一只麋鹿。
08:53
Or you could do a moose驼鹿.
209
515000
2000
或是一只驼鹿。
08:55
Or, really, any other kind of deer鹿.
210
517000
2000
或是其它任何一种鹿。
08:57
These techniques技术 revolutionized革命性 this art艺术.
211
519000
3000
这些技术改革了这门艺术。
09:00
We found发现 we could do insects昆虫,
212
522000
2000
我们发现我们可以叠出昆虫,
09:02
spiders蜘蛛, which哪一个 are close,
213
524000
2000
或是相近的蜘蛛,
09:04
things with legs, things with legs and wings翅膀,
214
526000
3000
有脚的东西,有脚和翅膀的东西,
09:08
things with legs and antennae天线.
215
530000
2000
和有脚和触角的东西。
09:10
And if folding折页 a single praying祈祷 mantis from a single uncut完整无缺 square广场
216
532000
3000
如果用一张没剪过的正方形纸叠一只螳螂
09:13
wasn't interesting有趣 enough足够,
217
535000
2000
还不够有趣的话,
09:15
then you could do two praying祈祷 mantises螳螂
218
537000
2000
你们可以用一张没剪过的正方形纸
09:17
from a single uncut完整无缺 square广场.
219
539000
2000
叠两只螳螂。
09:19
She's eating him.
220
541000
2000
她在吃他。
09:21
I call it "Snack小吃 Time."
221
543000
3000
我称之为“点心时间”。
09:24
And you can do more than just insects昆虫.
222
546000
2000
你们能做的不只是昆虫。
09:26
This -- you can put details细节,
223
548000
2000
你们可以把它做到有细节,
09:28
toes脚趾 and claws. A grizzly灰熊 bear has claws.
224
550000
3000
像指头和爪子。一只有爪子的北美洲灰熊。
09:31
This tree frog青蛙 has toes脚趾.
225
553000
2000
和这只有脚趾的树蛙。
09:33
Actually其实, lots of people in origami折纸 now put toes脚趾 into their models楷模.
226
555000
3000
实际上,在折纸艺术中有很多人把指头加入到他们的模型中。
09:36
Toes脚趾 have become成为 an origami折纸 meme米姆,
227
558000
2000
指头变成了折纸艺术的文化基因。
09:38
because everyone's大家的 doing it.
228
560000
3000
因为每个人都在做。
09:41
You can make multiple subjects主题.
229
563000
2000
你可以做出多种的物体。
09:43
So these are a couple一对 of instrumentalists器乐.
230
565000
2000
像这里有一些音乐家。
09:45
The guitar吉他 player播放机 from a single square广场,
231
567000
3000
一个正方形做出的吉他手。
09:48
the bass低音 player播放机 from a single square广场.
232
570000
2000
一个正方形做出的贝斯手。
09:50
And if you say, "Well, but the guitar吉他, bass低音 --
233
572000
2000
如果你说,“好吧,但吉他和贝斯
09:52
that's not so hot.
234
574000
2000
不够帅。
09:54
Do a little more complicated复杂 instrument仪器."
235
576000
2000
做些更复杂的乐器吧。”
09:56
Well, then you could do an organ器官.
236
578000
2000
那你可以做一架风琴。
09:58
(Laughter笑声)
237
580000
3000
(笑声)
10:01
And what this has allowed允许 is the creation创建
238
583000
2000
所以在这个世界里我们能
10:03
of origami-on-demand折纸点播.
239
585000
2000
做出所需要的创造。
10:05
So now people can say, "I want exactly究竟 this and this and this,"
240
587000
3000
如果现在有人说,我想要这个这个还有这个。
10:08
and you can go out and fold it.
241
590000
3000
你就可以精确的把它们叠出来。
10:11
And sometimes有时 you create创建 high art艺术,
242
593000
2000
有时可以做纯艺术。
10:13
and sometimes有时 you pay工资 the bills票据 by doing some commercial广告 work.
243
595000
3000
有时可以做些商品卖钱。
10:16
But I want to show显示 you some examples例子.
244
598000
2000
但是我想给你们看一些例子。
10:18
Everything you'll你会 see here,
245
600000
2000
除了车子,
10:20
except the car汽车, is origami折纸.
246
602000
3000
你们将看到的所有东西都是折纸。
10:23
(Video视频)
247
605000
28000
(影片)
10:51
(Applause掌声)
248
633000
3000
(掌声)
10:54
Just to show显示 you, this really was folded折叠 paper.
249
636000
3000
就是想展示给你们这些真实的折纸。
10:57
Computers电脑 made制作 things move移动,
250
639000
2000
电脑使所有的东西动起来。
10:59
but these were all real真实, folded折叠 objects对象 that we made制作.
251
641000
3000
但是这些折纸全都是货真价实的。
11:03
And we can use this not just for visuals视觉效果,
252
645000
3000
我们不只可以在视觉上运用到折纸艺术,
11:06
but it turns out to be useful有用 even in the real真实 world世界.
253
648000
3000
它实际上在现实世界中也很有用。
11:09
Surprisingly出奇, origami折纸
254
651000
1000
令人惊奇的,折纸
11:10
and the structures结构 that we've我们已经 developed发达 in origami折纸
255
652000
3000
和从折纸中发展出来的结构
11:13
turn out to have applications应用 in medicine医学, in science科学,
256
655000
3000
可以在医药学,科学,
11:16
in space空间, in the body身体, consumer消费者 electronics电子产品 and more.
257
658000
3000
太空,身体和电子产品等等上得到应用。
11:19
And I want to show显示 you some of these examples例子.
258
661000
3000
我想展示一些例子。
11:22
One of the earliest最早 was this pattern模式,
259
664000
2000
在最早的应用中有这样一个样式,
11:24
this folded折叠 pattern模式,
260
666000
2000
折纸样式,
11:26
studied研究 by Koryo高丽 Miura三浦, a Japanese日本 engineer工程师.
261
668000
3000
由日本的工程师Koryo Miura发明的。
11:29
He studied研究 a folding折页 pattern模式, and realized实现
262
671000
2000
他研究这个折纸样式,然后发现
11:31
this could fold down into an extremely非常 compact紧凑 package
263
673000
3000
可以折出很紧凑的包装,
11:34
that had a very simple简单 opening开盘 and closing关闭 structure结构体.
264
676000
3000
有很简单的开口和闭合结构。
11:37
And he used it to design设计 this solar太阳能 array排列.
265
679000
3000
他应用这个技术设计了这个太阳能电池板。
11:40
It's an artist's艺术家 rendition翻译, but it flew in a Japanese日本 telescope望远镜
266
682000
3000
这是一个艺术家的表演,但它在1995应用到了
11:43
in 1995.
267
685000
2000
一架日本望远镜。
11:45
Now, there is actually其实 a little origami折纸
268
687000
2000
现在在詹姆斯韦伯太空望远镜中只有
11:47
in the James詹姆士 Webb韦伯 Space空间 Telescope望远镜, but it's very simple简单.
269
689000
3000
一点点的折纸艺术,但它十分之简单。
11:50
The telescope望远镜, going up in space空间,
270
692000
2000
这架进入太空的望远镜
11:52
it unfolds展开 in two places地方.
271
694000
3000
在两处展开。
11:55
It folds褶皱 in thirds三分之二. It's a very simple简单 pattern模式 --
272
697000
2000
它在第三个处折叠。它是一个很简单的式样,
11:57
you wouldn't不会 even call that origami折纸.
273
699000
2000
你都不会把它称作折纸。
11:59
They certainly当然 didn't need to talk to origami折纸 artists艺术家.
274
701000
3000
这些科学家的确不用跟折纸艺术家讨论。
12:02
But if you want to go higher更高 and go larger than this,
275
704000
3000
但当你要更深入的研究时,
12:05
then you might威力 need some origami折纸.
276
707000
2000
折纸术是必需的。
12:07
Engineers工程师 at Lawrence劳伦斯 Livermore利弗莫尔 National国民 Lab实验室
277
709000
2000
劳伦斯利物穆尔国家实验室的工程师们
12:09
had an idea理念 for a telescope望远镜 much larger.
278
711000
3000
有一个关于一个更大的望远镜的构想。
12:12
They called it the Eyeglass眼镜.
279
714000
2000
他们称之为“镜片”。
12:14
The design设计 called for geosynchronous地球同步 orbit轨道
280
716000
2000
这个设计需要同步轨道,
12:16
25,000 miles英里 up,
281
718000
2000
高于地面26000英里,
12:18
100-meter-仪表 diameter直径 lens镜片.
282
720000
3000
和直径100米的镜片。
12:21
So, imagine想像 a lens镜片 the size尺寸 of a football足球 field领域.
283
723000
3000
所以镜片有一个橄榄球场那么大。
12:24
There were two groups of people who were interested有兴趣 in this:
284
726000
2000
有两类人对这个望远镜有兴趣:
12:26
planetary行星 scientists科学家们, who want to look up,
285
728000
3000
想要观察太空的行星学家,
12:29
and then other people, who wanted to look down.
286
731000
3000
和其他想要观察地球的人。
12:33
Whether是否 you look up or look down,
287
735000
2000
不论你想观察什么,
12:35
how do you get it up in space空间? You've got to get it up there in a rocket火箭.
288
737000
3000
该怎么上太空呢?你需要一个火箭。
12:38
And rockets火箭 are small. So you have to make it smaller.
289
740000
3000
而且火箭一般都很小。所以你需要把望远镜做的小一些。
12:41
How do you make a large sheet of glass玻璃 smaller?
290
743000
2000
怎么把一大片玻璃变小呢?
12:43
Well, about the only way is to fold it up somehow不知何故.
291
745000
3000
唯一的办法就是折叠。
12:46
So you have to do something like this.
292
748000
2000
所以你要做这样的事,
12:48
This was a small model模型.
293
750000
2000
这一个小型的模型。
12:51
Folded折叠 lens镜片, you divide划分 up the panels面板, you add flexures弯曲.
294
753000
2000
对于镜片,你把板面分区然后加上弯曲。
12:53
But this pattern's模式的 not going to work
295
755000
3000
但是这个样式不能把100米的东西
12:56
to get something 100 meters down to a few少数 meters.
296
758000
3000
变成几米。
12:59
So the Livermore利弗莫尔 engineers工程师,
297
761000
2000
所以利物穆尔的工程师们,
13:01
wanting希望 to make use of the work of dead people,
298
763000
2000
想要利用那些死去的人的成果,
13:03
or perhaps也许 live生活 origamistsorigamists, said,
299
765000
3000
或是活着的折纸艺术家的成果。
13:06
"Let's see if someone有人 else其他 is doing this sort分类 of thing."
300
768000
3000
工程师们说“看看有没有别人在做这类事。”
13:09
So they looked看着 into the origami折纸 community社区,
301
771000
3000
所以他们研究折纸圈。
13:12
we got in touch触摸 with them, and I started开始 working加工 with them.
302
774000
2000
我们和折纸艺术家取得联系,而我开始和他们一起工作。
13:14
And we developed发达 a pattern模式 together一起
303
776000
2000
我们一起开发了一个
13:16
that scales to arbitrarily任意 large size尺寸,
304
778000
2000
可以应用到任意大小,
13:18
but that allows允许 any flat平面 ring or disc圆盘
305
780000
4000
但可以允许所有的平面环或圆盘
13:22
to fold down into a very neat整齐, compact紧凑 cylinder圆筒.
306
784000
3000
折成一个整洁紧凑的圆柱体的样式。
13:25
And they adopted采用 that for their first generation,
307
787000
2000
他们在第一代的望远镜中采用了这个样式。
13:27
which哪一个 was not 100 meters -- it was a five-meter五米.
308
789000
2000
而第一代并不是100米而是5米。
13:29
But this is a five-meter五米 telescope望远镜 --
309
791000
2000
但是这个5米的望远镜
13:31
has about a quarter-mile四分之一英里 focal length长度.
310
793000
2000
有0.25英里的焦距。
13:33
And it works作品 perfectly完美 on its test测试 range范围,
311
795000
2000
而且在它的测试范围内效果很好。
13:35
and it indeed确实 folds褶皱 up into a neat整齐 little bundle.
312
797000
3000
它也的确被叠成了一小捆。
13:39
Now, there is other origami折纸 in space空间.
313
801000
2000
现在,还有别的折纸术应用到太空中。
13:41
Japan日本 Aerospace航天 [Exploration勘探] Agency机构 flew a solar太阳能 sail,
314
803000
3000
日本航空【探索者】部门发射了一个太阳光帆。
13:44
and you can see here that the sail expands展开 out,
315
806000
3000
你们可以看到帆伸展开,
13:47
and you can still see the fold lines线.
316
809000
2000
还有帆上的折叠线。
13:49
The problem问题 that's being存在 solved解决了 here is
317
811000
3000
在这里所被解决的问题是
13:52
something that needs需求 to be big and sheet-like片状 at its destination目的地,
318
814000
3000
做出了一个在旅途中很小
13:55
but needs需求 to be small for the journey旅程.
319
817000
2000
但在目的地很大的薄片状的物体。
13:57
And that works作品 whether是否 you're going into space空间,
320
819000
3000
这个可以作用于当你想进入太空,
14:00
or whether是否 you're just going into a body身体.
321
822000
3000
或是想进入人的身体时。
14:03
And this example is the latter后者.
322
825000
2000
这个例子就是进入人身体的。
14:05
This is a heart stent支架 developed发达 by Zhong You
323
827000
3000
这是由牛津大学的钟游发明的
14:08
at Oxford牛津 University大学.
324
830000
2000
心脏手术支架。
14:10
It holds持有 open打开 a blocked受阻 artery动脉 when it gets得到 to its destination目的地,
325
832000
3000
它在到达目的地时会打开被堵塞的动脉血管。
14:13
but it needs需求 to be much smaller for the trip there,
326
835000
3000
但在旅途中它需要变得很小才能通过
14:16
through通过 your blood血液 vessels船只.
327
838000
2000
你的血管。
14:18
And this stent支架 folds褶皱 down using运用 an origami折纸 pattern模式,
328
840000
3000
这个支架运用一种折纸术被叠小。
14:21
based基于 on a model模型 called the water bomb炸弹 base基础.
329
843000
3000
我们称这个模型为水弹模型。
14:25
Airbag安全气囊 designers设计师 also have the problem问题
330
847000
2000
安全气囊的设计师也遇到了同样的
14:27
of getting得到 flat平面 sheets床单
331
849000
2000
把大薄片塞进小空间里的
14:29
into a small space空间.
332
851000
3000
问题。
14:32
And they want to do their design设计 by simulation模拟.
333
854000
2000
而且他们都是通过仿真技术来做设计。
14:34
So they need to figure数字 out how, in a computer电脑,
334
856000
2000
所以他们需要在电脑里研究出
14:36
to flatten弄平 an airbag安全气囊.
335
858000
2000
怎样使安全气囊变平。
14:38
And the algorithms算法 that we developed发达
336
860000
2000
我们所开发出的叠昆虫的
14:40
to do insects昆虫
337
862000
2000
算法在这里变成了
14:42
turned转身 out to be the solution for airbags安全气囊
338
864000
3000
在仿真技术中解决安全气囊问题的
14:45
to do their simulation模拟.
339
867000
2000
方法。
14:47
And so they can do a simulation模拟 like this.
340
869000
3000
所以设计师可以做一个这个的模仿。
14:50
Those are the origami折纸 creases折痕 forming成型,
341
872000
2000
那些就是折纸的折痕,
14:52
and now you can see the airbag安全气囊 inflate膨胀
342
874000
2000
现在你们所看到的就是正在放气的安全气囊
14:54
and find out, does it work?
343
876000
3000
并且大家可以知道这方法管不管用。
14:57
And that leads引线
344
879000
2000
这个例子实际上可以
14:59
to a really interesting有趣 idea理念.
345
881000
2000
推导出一个十分有趣的构想。
15:01
You know, where did these things come from?
346
883000
3000
你们知道,这些发明设计都是从哪来么?
15:04
Well, the heart stent支架
347
886000
2000
这个心脏手术支架
15:06
came来了 from that little blow-up爆炸 box
348
888000
2000
是从大家小学就学到的
15:08
that you might威力 have learned学到了 in elementary初级 school学校.
349
890000
3000
纸气球中衍生来的。
15:11
It's the same相同 pattern模式, called the water bomb炸弹 base基础.
350
893000
3000
它们有着相同的构造,称之为“水弹模型”。
15:14
The airbag-flattening安全气囊变平 algorithm算法
351
896000
2000
那个使安全气囊变平的算法是
15:16
came来了 from all the developments发展
352
898000
2000
从那些实际上只是
15:18
of circle packing填料 and the mathematical数学的 theory理论
353
900000
3000
发明出来用来叠昆虫,
15:21
that was really developed发达
354
903000
2000
也就是有腿的东西,
15:23
just to create创建 insects昆虫 -- things with legs.
355
905000
3000
的数学理论。
15:27
The thing is, that this often经常 happens发生
356
909000
2000
其实呢,这样的事经常
15:29
in math数学 and science科学.
357
911000
2000
发生在数学和科学里面。
15:31
When you get math数学 involved参与, problems问题 that you solve解决
358
913000
3000
当你运用数学,解决
15:34
for aesthetic审美 value only,
359
916000
2000
你纯粹为了美学价值
15:36
or to create创建 something beautiful美丽,
360
918000
2000
或是创造美而想解决的问题时,
15:38
turn around and turn out
361
920000
2000
实际上结果反过来
15:40
to have an application应用 in the real真实 world世界.
362
922000
3000
在现实世界中也可以应用。
15:43
And as weird奇怪的 and surprising奇怪 as it may可能 sound声音,
363
925000
3000
而且即使听上去很奇怪,
15:46
origami折纸 may可能 someday日后 even save保存 a life.
364
928000
3000
折纸术有一天可能会救人一命。
15:50
Thanks谢谢.
365
932000
2000
谢谢。
15:52
(Applause掌声)
366
934000
2000
(掌声)
Translated by Hua Liu
Reviewed by Amy Zerotus

▲Back to top

ABOUT THE SPEAKER
Robert Lang - Origamist
Robert Lang merges mathematics with aesthetics to fold elegant modern origami. His scientific approach helps him make folds once thought impossible -- and has secured his place as one of the first great Western masters of the art.

Why you should listen

Origami, as Robert Lang describes it, is simple: "You take a creature, you combine it with a square, and you get an origami figure." But Lang's own description belies the technicality of his art; indeed, his creations inspire awe by sheer force of their intricacy. His repertoire includes a snake with one thousand scales, a two-foot-tall allosaurus skeleton, and a perfect replica of a Black Forest cuckoo clock. Each work is the result of software (which Lang himself pioneered) that manipulates thousands of mathematical calculations in the production of a "folding map" of a single creature.

The marriage of mathematics and origami harkens back to Lang's own childhood.  As a first-grader, Lang proved far too clever for elementary mathematics and quickly became bored, prompting his teacher to give him a book on origami. His acuity for mathematics would lead him to become a physicist at the California Institute of Technology, and the owner of nearly fifty patents on lasers and optoelectronics. Now a professional origami master, Lang practices his craft as both artist and engineer, one day folding the smallest of insects and the next the largest of space-bound telescope lenses.

More profile about the speaker
Robert Lang | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee