ABOUT THE SPEAKER
Ray Kurzweil - Inventor, futurist
Ray Kurzweil is an engineer who has radically advanced the fields of speech, text and audio technology. He's revered for his dizzying -- yet convincing -- writing on the advance of technology, the limits of biology and the future of the human species.

Why you should listen

Inventor, entrepreneur, visionary, Ray Kurzweil's accomplishments read as a startling series of firsts -- a litany of technological breakthroughs we've come to take for granted. Kurzweil invented the first optical character recognition (OCR) software for transforming the written word into data, the first print-to-speech software for the blind, the first text-to-speech synthesizer, and the first music synthesizer capable of recreating the grand piano and other orchestral instruments, and the first commercially marketed large-vocabulary speech recognition.

Yet his impact as a futurist and philosopher is no less significant. In his best-selling books, which include How to Create a Mind, The Age of Spiritual Machines, The Singularity Is Near: When Humans Transcend Biology, Kurzweil depicts in detail a portrait of the human condition over the next few decades, as accelerating technologies forever blur the line between human and machine.

In 2009, he unveiled Singularity University, an institution that aims to "assemble, educate and inspire leaders who strive to understand and facilitate the development of exponentially advancing technologies." He is a Director of Engineering at Google, where he heads up a team developing machine intelligence and natural language comprehension.

More profile about the speaker
Ray Kurzweil | Speaker | TED.com
TED2009

Ray Kurzweil: A university for the coming singularity

雷‧庫茲威爾:一所迎接新紀元的大學

Filmed:
1,025,725 views

雷‧庫茲威爾最新的圖表顯示,不管經濟蕭條與否,科技只會持續快速發展。庫茲威爾發表了他的新計畫-成立優越大學(Singularity University)來研究未來的科技走勢,並引導科技的發展,使人類能從中受益。註: "Singularity University,專辦些短期的人文課程給行政人員,希望科技高層除技術發展外可以多了解這個世界,增加人文的關懷。"
- Inventor, futurist
Ray Kurzweil is an engineer who has radically advanced the fields of speech, text and audio technology. He's revered for his dizzying -- yet convincing -- writing on the advance of technology, the limits of biology and the future of the human species. Full bio

Double-click the English transcript below to play the video.

00:13
Information信息 technology技術 grows成長 in an exponential指數 manner方式.
0
1000
3000
資訊科技正在以指數的幅度發展
00:16
It's not linear線性. And our intuition直覺 is linear線性.
1
4000
4000
它並不是線性的。可是對我們來講,直覺知識卻是線性的
00:20
When we walked through通過 the savanna稀樹草原 a thousand years年份 ago
2
8000
2000
一千年以前,當我們走過熱帶草原
00:22
we made製作 linear線性 predictions預測 where that animal動物 would be,
3
10000
2000
我們直接推斷獵物會在哪邊
00:24
and that worked工作 fine. It's hardwired硬線 in our brains大腦.
4
12000
3000
這樣的推斷是行得通的。我們已經習慣利用線性的方式來估計
00:27
But the pace步伐 of exponential指數 growth發展
5
15000
3000
但是指數發展的速度
00:30
is really what describes介紹 information信息 technologies技術.
6
18000
3000
才能準確地形容目前的資訊科技.
00:33
And it's not just computation計算.
7
21000
3000
這不僅僅是計算方式的差異.
00:36
There is a big difference區別 between之間 linear線性 and exponential指數 growth發展.
8
24000
2000
線性和指數增長有著很大的不同.
00:38
If I take 30 steps腳步 linearly線性 -- one, two, three, four, five --
9
26000
4000
假如我直線地走個30步, 1, 2, 3, 4, 5
00:42
I get to 30.
10
30000
2000
我到達30.
00:44
If I take 30 steps腳步 exponentially成倍 -- two, four, eight, 16 --
11
32000
3000
假如我以指數方式走30步, 2, 4, 8, 16,
00:47
I get to a billion十億.
12
35000
2000
我到達10億多.
00:49
It makes品牌 a huge巨大 difference區別.
13
37000
2000
這相差了十萬八千里.
00:51
And that really describes介紹 information信息 technology技術.
14
39000
2000
指數增長確切地描述了資訊科技
00:53
When I was a student學生 at MITMIT,
15
41000
2000
當年我還在麻省理工學院上學的時候,
00:55
we all shared共享 one computer電腦 that took up a whole整個 building建造.
16
43000
2000
我們班上共用的一台電腦就佔掉了整棟樓的能量資源.
00:57
The computer電腦 in your cellphone手機 today今天 is a million百萬 times cheaper便宜,
17
45000
3000
現在手機裡面的電腦程式便宜了一百萬倍,
01:00
a million百萬 times smaller,
18
48000
2000
小了一百萬倍,
01:02
a thousand times more powerful強大.
19
50000
2000
強大了一百萬倍.
01:04
That's a billion-fold十億倍 increase增加 in capability能力 per dollar美元
20
52000
3000
這相當於一美元就有一億倍的增長能力
01:07
that we've我們已經 actually其實 experienced有經驗的 since以來 I was a student學生.
21
55000
2000
從我還是個學生至今, 這就是我們所經歷的.
01:09
And we're going to do it again in the next下一個 25 years年份.
22
57000
3000
在未來, 這樣的快速發展還會持續25年.
01:12
Information信息 technology技術 progresses進展
23
60000
2000
通過一系列的S-曲線
01:14
through通過 a series系列 of S-curvesS曲線
24
62000
2000
資訊科技將會持續進步
01:16
where each one is a different不同 paradigm範例.
25
64000
2000
到不同的模式.
01:18
So people say, "What's going to happen發生 when Moore's摩爾定律 Law comes to an end結束?"
26
66000
3000
所以人們問, "當摩爾定律到達終點, 這世界會變成怎樣?"
01:21
Which哪一個 will happen發生 around 2020.
27
69000
2000
當摩爾定律在2020到達終點,
01:23
We'll then go to the next下一個 paradigm範例.
28
71000
2000
我們會進入下一個發展模式.
01:25
And Moore's摩爾定律 Law was not the first paradigm範例
29
73000
2000
但是摩爾定律並不是第一個導致
01:27
to bring帶來 exponential指數 growth發展 to computing計算.
30
75000
2000
資訊科技指數發展的思維模式.
01:29
The exponential指數 growth發展 of computing計算 started開始
31
77000
2000
資訊科技指數性的進步發生於
01:31
decades幾十年 before Gordon戈登 Moore穆爾 was even born天生.
32
79000
2000
戈登.摩爾出生幾十年前
01:33
And it doesn't just apply應用 to computation計算.
33
81000
4000
科技的指數發展並不限於電腦科技,
01:37
It's really any technology技術 where we can measure測量
34
85000
2000
它包含任何一樣
01:39
the underlying底層 information信息 properties性能.
35
87000
3000
我們所知道到的科技.
01:42
Here we have 49 famous著名 computers電腦. I put them in a logarithmic對數的 graph圖形.
36
90000
4000
這裡有49台不同年代的電腦,我用對數線圖做個整理
01:46
The logarithmic對數的 scale規模 hides the scale規模 of the increase增加,
37
94000
4000
對數線的大小影藏了真正增長的比率.
01:50
because this represents代表 trillions-fold萬億倍 increase增加
38
98000
2000
但是這圖表描繪了自1890以來
01:52
since以來 the 1890 census人口調查.
39
100000
3000
科技億萬倍的增長.
01:55
In 1950s they were shrinking萎縮 vacuum真空 tubes,
40
103000
2000
在50年代, 電腦工程師盡可能的縮小真空管,
01:57
making製造 them smaller and smaller. They finally最後 hit擊中 a wall;
41
105000
3000
他們一直改良又改良, 最後到達了極限.
02:00
they couldn't不能 shrink收縮 the vacuum真空 tube any more and keep the vacuum真空.
42
108000
2000
他們不能再縮小真空管,只能保留真空部分
02:02
And that was the end結束 of the shrinking萎縮 of vacuum真空 tubes,
43
110000
3000
而那就是真空管縮小技術的終點
02:05
but it was not the end結束 of the exponential指數 growth發展 of computing計算.
44
113000
3000
但那可不是資訊科技指數發展的結局.
02:08
We went to the fourth第四 paradigm範例, transistors晶體管,
45
116000
2000
我們到了第四個發展模式, 改良電晶體
02:10
and finally最後 integrated集成 circuits電路.
46
118000
2000
然後我們又去整合電路.
02:12
When that comes to an end結束 we'll go to the sixth第六 paradigm範例;
47
120000
2000
當上個步驟結束了, 我們將到達第六個發展模式,
02:14
three-dimensional三維 self-organizing自組織 molecular分子 circuits電路.
48
122000
4000
開發三維自組織分子電路.
02:18
But what's even more amazing驚人, really, than this
49
126000
3000
但比這個驚人的進步更難以置信的,
02:21
fantastic奇妙 scale規模 of progress進展,
50
129000
2000
我說真的,
02:23
is that -- look at how predictable可預測 this is.
51
131000
2000
是科技的發展有多麼好預測.
02:25
I mean this went through通過 thick and thin,
52
133000
2000
科技的發展經過大跟小,
02:27
through通過 war戰爭 and peace和平, through通過 boom繁榮 times and recessions經濟衰退.
53
135000
3000
戰爭跟和平, 繁榮跟衰退.
02:30
The Great Depression蕭條 made製作 not a dent凹痕 in this exponential指數 progression級數.
54
138000
4000
1930年的經濟大蕭條根本沒影響到科技的指數發展.
02:34
We'll see the same相同 thing in the economic經濟 recession不景氣 we're having now.
55
142000
4000
在這金融危機裡我們會見識到一樣的結果.
02:38
At least最小 the exponential指數 growth發展 of information信息 technology技術 capability能力
56
146000
3000
至少資訊科技的指數增長的能力
02:41
will continue繼續 unabated不減.
57
149000
3000
將不會減弱.
02:44
And I just updated更新 these graphs.
58
152000
2000
我更新了這些圖
02:46
Because I had them through通過 2002 in my book, "The Singularity奇異 is Near."
59
154000
3000
因為在我的書"奇點迫近"(The Singularity is Near), 數據只延伸到2002年,
02:49
So we updated更新 them,
60
157000
2000
所以我們更新了資料
02:51
so I could present當下 it here, to 2007.
61
159000
3000
讓我才能夠在2007年發表.
02:54
And I was asked, "Well aren't you nervous緊張?
62
162000
2000
很多人問我, "你不緊張嗎?
02:56
Maybe it kind of didn't stay on this exponential指數 progression級數."
63
164000
4000
說不定數據並不證明你所說的指數發展."
03:00
I was a little nervous緊張
64
168000
2000
我是有點緊張.
03:02
because maybe the data數據 wouldn't不會 be right,
65
170000
2000
害怕數據可能會不合.
03:04
but I've doneDONE this now for 30 years年份,
66
172000
2000
可是我做這行30多年了,
03:06
and it has stayed on this exponential指數 progression級數.
67
174000
3000
數據總是證明科技是朝向指數發展的.
03:09
Look at this graph圖形 here.You could buy購買 one transistor晶體管 for a dollar美元 in 1968.
68
177000
3000
看. 在1968年你要花一美元才能買一個電晶體
03:12
You can buy購買 half a billion十億 today今天,
69
180000
2000
今天一美元可以買五千萬個電晶體
03:14
and they are actually其實 better, because they are faster更快.
70
182000
2000
實際上今天的晶體管更好, 更快.
03:16
But look at how predictable可預測 this is.
71
184000
2000
看科技的發展有多麼好預測.
03:18
And I'd say this knowledge知識 is over-fitting過度擬合 to past過去 data數據.
72
186000
3000
我會說這資訊是過去式了.
03:21
I've been making製造 these forward-looking前瞻 predictions預測 for about 30 years年份.
73
189000
4000
我做了超過30年的前瞻性預測.
03:25
And the cost成本 of a transistor晶體管 cycle週期,
74
193000
2000
電晶體的費用,
03:27
which哪一個 is a measure測量 of the price價錢 performance性能 of electronics電子產品,
75
195000
2000
相應地呈現了電子的市場價格,
03:29
comes down about every一切 year.
76
197000
2000
每年都下降.
03:31
That's a 50 percent百分 deflation放氣 rate.
77
199000
2000
那說明了百分之五十的下降.
03:33
And it's also true真正 of other examples例子,
78
201000
2000
而且它也適用於其他的例子
03:35
like DNA脫氧核糖核酸 data數據 or brain data數據.
79
203000
2000
例如DNA數據或大腦的數據.
03:37
But we more than make up for that.
80
205000
2000
但是我們的社會進步的更快.
03:39
We actually其實 ship more than twice兩次 as much
81
207000
2000
實際上我們生產一倍以上
03:41
of every一切 form形成 of information信息 technology技術.
82
209000
2000
一種同樣的科技.
03:43
We've我們已經 had 18 percent百分 growth發展 in constant不變 dollars美元
83
211000
3000
過去半個世紀,不管哪種資訊科技,
03:46
in every一切 form形成 of information信息 technology技術 for the last half-century半個世紀,
84
214000
3000
衡定價值都有百分之十八的增長
03:49
despite儘管 the fact事實 that you can get twice兩次 as much of it each year.
85
217000
4000
儘管你每年都可以得到一倍以上的回報
03:53
This is a completely全然 different不同 example.
86
221000
2000
這是個完全不同的例子.
03:55
This is not Moore's摩爾定律 Law.
87
223000
2000
這不是摩爾定律.
03:57
The amount of DNA脫氧核糖核酸 data數據
88
225000
2000
我們所獲得DNA數據的總量
03:59
we've我們已經 sequenced測序 has doubled翻倍 every一切 year.
89
227000
2000
總是增加一倍以上.
04:01
The cost成本 has come down by half every一切 year.
90
229000
3000
而每年費用卻下跌一半.
04:04
And this has been a smooth光滑 progression級數
91
232000
2000
自從人類基因定序計劃(Human Genome Project),
04:06
since以來 the beginning開始 of the genome基因組 project項目.
92
234000
2000
這已經成為了一個持續的發展定律.
04:08
And halfway through通過 the project項目, skeptics懷疑論者 said,
93
236000
2000
當這計劃進行到一半時, 有人懷疑
04:10
"Well, this is not working加工 out. You're halfway through通過 the genome基因組 project項目
94
238000
3000
"這不會成功的. 已過了一半的計劃時間,
04:13
and you've finished one percent百分 of the project項目."
95
241000
2000
你卻只完成了百分之一的任務."
04:15
But that was really right on schedule時間表.
96
243000
2000
可是那工程是如期進行.
04:17
Because if you double one percent百分 seven more times,
97
245000
2000
因為如果你將百分之一乘兩倍,並連乘七次以上
04:19
which哪一個 is exactly究竟 what happened發生,
98
247000
2000
實際上所產生的,
04:21
you get 100 percent百分. And the project項目 was finished on time.
99
249000
3000
就是百分之百. 如此工程按照時間地完成了.
04:24
Communication通訊 technologies技術:
100
252000
2000
傳播科技
04:26
50 different不同 ways方法 to measure測量 this,
101
254000
2000
可用50種不同的方式來評量
04:28
the number of bits being存在 moved移動 around, the size尺寸 of the Internet互聯網.
102
256000
3000
正在移動的位元數目, 網路的大小.
04:31
But this has progressed進展 at an exponential指數 pace步伐.
103
259000
2000
但科技正在以指數的步伐進步.
04:33
This is deeply democratizing民主化.
104
261000
2000
這是強烈地民主化
04:35
I wrote, over 20 years年份 ago in "The Age年齡 of Intelligent智能 Machines,"
105
263000
3000
20年前,我在我的書"誰會代替人類:智能簡史" (The Age of Intelligent Machines) 中寫到,
04:38
when the Soviet蘇聯 Union聯盟 was going strong強大, that it would be swept風靡 away
106
266000
3000
當蘇聯正強大的時候,
04:41
by this growth發展 of decentralized分散 communication通訊.
107
269000
4000
它會被這鼓增長的非主流通訊勢力瓦解
04:45
And we will have plenty豐富 of computation計算 as we go through通過 the 21stST century世紀
108
273000
3000
當我們經過21世紀, 我們能運用大量電腦科技
04:48
to do things like simulate模擬 regions地區 of the human人的 brain.
109
276000
4000
來做些事,例如模擬人類大腦區域
04:52
But where will we get the software軟件?
110
280000
2000
但是我們要從哪裡得到這科技?
04:54
Some critics批評者 say, "Oh, well software軟件 is stuck卡住 in the mud."
111
282000
3000
有寫評論家說, "喔, 科技還沒那麼發達."
04:57
But we are learning學習 more and more about the human人的 brain.
112
285000
2000
事實上, 我們越來越了解人類大腦
04:59
Spatial空間的 resolution解析度 of brain scanning掃描 is doubling加倍 every一切 year.
113
287000
3000
每年腦部掃描的空間分辨率都比前年高了一倍.
05:02
The amount of data數據 we're getting得到 about the brain is doubling加倍 every一切 year.
114
290000
3000
每年我們所得到有關人類大腦的訊息都增加了一倍.
05:05
And we're showing展示 that we can actually其實 turn this data數據
115
293000
3000
我們證明,事實上可以轉化這個數據
05:08
into working加工 models楷模 and simulations模擬 of brain regions地區.
116
296000
3000
便成大腦區域的模型和模擬
05:11
There is about 20 regions地區 of the brain that have been modeled仿照,
117
299000
2000
目前人類大概建構,模擬並測試了
05:13
simulated模擬 and tested測試:
118
301000
2000
20個大腦區域:
05:15
the auditory聽覺 cortex皮質, regions地區 of the visual視覺 cortex皮質;
119
303000
3000
不同的聽覺和視覺皮層區域,
05:18
cerebellum小腦, where we do our skill技能 formation編隊;
120
306000
2000
構成不同能力的小腦,
05:20
slices of the cerebral顱內 cortex皮質, where we do our rational合理的 thinking思維.
121
308000
4000
做理性思考的大腦等.
05:24
And all of this has fueled燃料
122
312000
2000
所有的發現,
05:26
an increase增加, very smooth光滑 and predictable可預測, of productivity生產率.
123
314000
3000
以相當平穩可預測的模式,增加了生產力.
05:29
We've我們已經 gone走了 from 30 dollars美元 to 130 dollars美元
124
317000
2000
因為資訊科技的進步,
05:31
in constant不變 dollars美元 in the value of an average平均 hour小時 of human人的 labor勞動,
125
319000
4000
我們的工作價值從每小時30元美金
05:35
fueled燃料 by this information信息 technology技術.
126
323000
3000
到每小時130元美金.
05:38
And we're all concerned關心 about energy能源 and the environment環境.
127
326000
3000
這還只是能源和環境的影響.
05:41
Well this is a logarithmic對數的 graph圖形.
128
329000
2000
嗯, 這是一個對數圖.
05:43
This represents代表 a smooth光滑 doubling加倍,
129
331000
2000
每兩年,
05:45
every一切 two years年份, of the amount of solar太陽能 energy能源 we're creating創建,
130
333000
4000
我們製造的太陽能持續倍增.
05:49
particularly尤其 as we're now applying應用 nanotechnology納米技術,
131
337000
2000
特別是我們現在正在運用奈米科技,
05:51
a form形成 of information信息 technology技術, to solar太陽能 panels面板.
132
339000
3000
一種資訊科技, 在太陽能電池板上.
05:54
And we're only eight doublings倍增 away
133
342000
2000
我們現在只離我們所需要的百分之百能量
05:56
from it meeting會議 100 percent百分 of our energy能源 needs需求.
134
344000
2000
八次的雙倍增長.
05:58
And there is 10 thousand times more sunlight陽光 than we need.
135
346000
4000
而太陽能則超過我們一萬多倍的需求.
06:02
We ultimately最終 will merge合併 with this technology技術. It's already已經 very close to us.
136
350000
5000
最後太陽能會和科技結合。時間就快到了。
06:07
When I was a student學生 it was across橫過 campus校園, now it's in our pockets口袋.
137
355000
3000
當我還是個學生, 它在校園的對面. 現在它可以放進我們的口袋裡.
06:10
What used to take up a building建造 now fits適合 in our pockets口袋.
138
358000
3000
以前用掉整棟大樓資源的現在適合放進我們的口袋裡.
06:13
What now fits適合 in our pockets口袋 would fit適合 in a blood血液 cell細胞 in 25 years年份.
139
361000
3000
現在放得進我們口袋裡的,25年後將可以放在一個紅血球裡.
06:16
And we will begin開始 to actually其實 deeply influence影響
140
364000
4000
當我們越來越接近這科技,
06:20
our health健康 and our intelligence情報,
141
368000
2000
我們會真正開始左右
06:22
as we get closer接近 and closer接近 to this technology技術.
142
370000
4000
我們的健康跟智慧.
06:26
Based基於 on that we are announcing宣布, here at TEDTED,
143
374000
3000
所以我們要以TED一貫的傳統,,
06:29
in true真正 TEDTED tradition傳統, Singularity奇異 University大學.
144
377000
3000
在TED這裡宣布,我們要設立優越大學.
06:32
It's a new university大學
145
380000
2000
這是一所全新的大學
06:34
that's founded成立 by Peter彼得 Diamandis迪曼蒂斯, who is here in the audience聽眾,
146
382000
2000
由台下的聽眾,彼得‧岱爾莽第斯先生
06:36
and myself.
147
384000
2000
和我所創立.
06:38
It's backed已備份 by NASANASA and Google谷歌,
148
386000
2000
它獲得美國太空總署(NASA)和Google的贊助
06:40
and other leaders領導者 in the high-tech高科技 and science科學 community社區.
149
388000
4000
還有其他在高科技領域的領袖們的支持.
06:44
And our goal目標 was to assemble集合 the leaders領導者,
150
392000
3000
我們的目標是召集領導人,
06:47
both teachers教師 and students學生們,
151
395000
2000
--老師和學生,
06:49
in these exponentially成倍 growing生長 information信息 technologies技術,
152
397000
2000
來研究這個指數發展的資訊科技
06:51
and their application應用.
153
399000
2000
和它的用途.
06:53
But Larry拉里 Page made製作 an impassioned激切 speech言語
154
401000
2000
裴基(Larry Page)先生在我們的會議上
06:55
at our organizing組織 meeting會議,
155
403000
2000
發表了一段熱烈的演講.
06:57
saying we should devote奉獻 this study研究
156
405000
5000
他說我們應致力研究於
07:02
to actually其實 addressing解決 some of the major重大的 challenges挑戰 facing面對 humanity人性.
157
410000
4000
真正解決一些人類面臨的重大挑戰.
07:06
And if we did that, then Google谷歌 would back this.
158
414000
2000
假如我們做了這選擇, Google會資助我們.
07:08
And so that's what we've我們已經 doneDONE.
159
416000
2000
所以我們做了研究上的一些改變.
07:10
The last third第三 of the nine-week九週 intensive集約 summer夏季 session會議
160
418000
4000
在密集的九週暑期學營裡的最後三週,
07:14
will be devoted忠誠 to a group project項目 to address地址
161
422000
2000
我們將會分組專門來提出
07:16
some major重大的 challenge挑戰 of humanity人性.
162
424000
2000
一些社會上面臨的重大挑戰.
07:18
Like for example, applying應用 the Internet互聯網,
163
426000
2000
例如將今天已經很普及的網路,
07:20
which哪一個 is now ubiquitous普及, in the rural鄉村 areas of China中國 or in Africa非洲,
164
428000
5000
提供給中國和非洲的鄉村地區,
07:25
to bringing使 health健康 information信息
165
433000
2000
好將健康資訊
07:27
to developing發展 areas of the world世界.
166
435000
3000
傳播到世界的每個發展地區.
07:30
And these projects項目 will continue繼續 past過去 these sessions會議,
167
438000
3000
這些科研項目會延展到這些學營外,
07:33
using運用 collaborative共同 interactive互動 communication通訊.
168
441000
3000
通過協作地互動溝通討論.
07:36
All the intellectual知識分子 property屬性 that is created創建 and taught
169
444000
4000
所有萌生和傳授的智慧財產
07:40
will be online線上 and available可得到,
170
448000
2000
將會在網路上公開,
07:42
and developed發達 online線上 in a collaborative共同 fashion時尚.
171
450000
3000
並在網路上互相合作發展.
07:45
Here is our founding創建 meeting會議.
172
453000
2000
這是我們的創校會議的照片.
07:47
But this is being存在 announced公佈 today今天.
173
455000
2000
今天我們在這裡發佈.
07:49
It will be permanently永久 headquartered總部設 in Silicon Valley,
174
457000
3000
優越大學(Singulariy University)將會永久設置在矽谷,
07:52
at the NASANASA Ames埃姆斯 research研究 center中央.
175
460000
2000
在NASA的艾密斯研究中心.
07:54
There are different不同 programs程式 for graduate畢業 students學生們,
176
462000
2000
我們提供不同的課程給研究生,
07:56
for executives高管 at different不同 companies公司.
177
464000
3000
和不同公司的高階主管.
07:59
The first six tracks軌道 here -- artificial人造 intelligence情報,
178
467000
2000
這裡的六種首要研究方向, 人工智能,
08:01
advanced高級 computing計算 technologies技術, biotechnology生物技術, nanotechnology納米技術 --
179
469000
3000
先進的電腦科技,生物科技,奈米科技
08:04
are the different不同 core核心 areas of information信息 technology技術.
180
472000
4000
分別是資訊科技不同的的核心領域.
08:08
Then we are going to apply應用 them to the other areas,
181
476000
2000
然後我們將會將它們應用到其他領域,
08:10
like energy能源, ecology生態,
182
478000
3000
例如能源, 生態環境,
08:13
policy政策 law and ethics倫理, entrepreneurship創業,
183
481000
2000
政策法律和道德, 企業態度,
08:15
so that people can bring帶來 these new technologies技術 to the world世界.
184
483000
4000
使人們可以把這些新技術帶給世界.
08:19
So we're very appreciative欣賞的 of the support支持 we've我們已經 gotten得到
185
487000
5000
我們非常感謝我們所得到,
08:24
from both the intellectual知識分子 leaders領導者, the high-tech高科技 leaders領導者,
186
492000
2000
來自知識份子和高科技領導人們的支持,
08:26
particularly尤其 Google谷歌 and NASANASA.
187
494000
2000
特別是Google和NASA.
08:28
This is an exciting扣人心弦 new venture冒險.
188
496000
2000
這是個興奮的全新研究.
08:30
And we invite邀請 you to participate參加. Thank you very much.
189
498000
3000
我們誠心地邀請你的加入. 謝謝.
08:33
(Applause掌聲)
190
501000
3000
(鼓掌)
Translated by Steven Shi
Reviewed by Alice Hsueh

▲Back to top

ABOUT THE SPEAKER
Ray Kurzweil - Inventor, futurist
Ray Kurzweil is an engineer who has radically advanced the fields of speech, text and audio technology. He's revered for his dizzying -- yet convincing -- writing on the advance of technology, the limits of biology and the future of the human species.

Why you should listen

Inventor, entrepreneur, visionary, Ray Kurzweil's accomplishments read as a startling series of firsts -- a litany of technological breakthroughs we've come to take for granted. Kurzweil invented the first optical character recognition (OCR) software for transforming the written word into data, the first print-to-speech software for the blind, the first text-to-speech synthesizer, and the first music synthesizer capable of recreating the grand piano and other orchestral instruments, and the first commercially marketed large-vocabulary speech recognition.

Yet his impact as a futurist and philosopher is no less significant. In his best-selling books, which include How to Create a Mind, The Age of Spiritual Machines, The Singularity Is Near: When Humans Transcend Biology, Kurzweil depicts in detail a portrait of the human condition over the next few decades, as accelerating technologies forever blur the line between human and machine.

In 2009, he unveiled Singularity University, an institution that aims to "assemble, educate and inspire leaders who strive to understand and facilitate the development of exponentially advancing technologies." He is a Director of Engineering at Google, where he heads up a team developing machine intelligence and natural language comprehension.

More profile about the speaker
Ray Kurzweil | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee