ABOUT THE SPEAKER
Oscar Schwartz - Writer and poet
Oscar Schwartz's research and writing concerns the influence of digital technology on culture and human interaction.

Why you should listen

Oscar Schwartz is an Australian writer and poet undertaking a PhD that asks whether a computer can write poetry. His research led to the development of a Turing test for poetry, which is available on a website he cofounded called bot or not.

More profile about the speaker
Oscar Schwartz | Speaker | TED.com
TEDxYouth@Sydney

Oscar Schwartz: Can a computer write poetry?

Oscar Schawartz: Pode un ordenador escribir poesía?

Filmed:
875,724 views

Se les un poema e te sintes conmovido por él, pero logo descubres que en realidade foi escrito por un ordenador, sentiríaste de distinta maneira ante a experiencia? Pensarías que o ordenador se expresou por sí mesmo e foi creativo, ou sentiríaste enganado por un sucio truco? Nesta charla, o escritor Oscar Schwartz examina porqué reaccionamos tan contundentemente á idea dun ordenador escribindo poesía-- e como esta reacción nos axuda a entender que significa ser humano.
- Writer and poet
Oscar Schwartz's research and writing concerns the influence of digital technology on culture and human interaction. Full bio

Double-click the English transcript below to play the video.

00:12
I have a question.
0
881
1230
Teño unha pregunta.
00:15
Can a computer write poetry?
1
3422
1943
Pode un ordenador escribir poesía?
00:18
This is a provocative question.
2
6959
2077
Esta é unha pregunta provocadora.
00:21
You think about it for a minute,
3
9715
1718
Pensas neso por un minuto,
00:23
and you suddenly have a bunch
of other questions like:
4
11457
2590
e de golpe unha morea
de preguntas
como:
00:26
What is a computer?
5
14769
1381
Que é un ordenador?
00:28
What is poetry?
6
16710
1575
Que é poesía?
00:30
What is creativity?
7
18707
1689
Que é creatividade?
Pero estas son preguntas
00:33
But these are questions
8
21650
1172
que a xente pasa toda a súa vida
tratando de responder,
00:34
that people spend their entire
lifetime trying to answer,
9
22846
3070
00:37
not in a single TED Talk.
10
25940
2224
non nunha única charla TED
Polo que intentaremos un enfoque diferente
00:40
So we're going to have to try
a different approach.
11
28188
2445
Velaquí arriba temos dous poemas.
00:42
So up here, we have two poems.
12
30657
2143
00:45
One of them is written by a human,
13
33839
2276
Un deles está escrito por un humano,
e o outro por un ordenador.
00:48
and the other one's written by a computer.
14
36139
2102
Vouvos a pedir que me digades cal é cal
00:50
I'm going to ask you to tell me
which one's which.
15
38754
2410
Intentádeo:
00:53
Have a go:
16
41858
1156
Poema1:
Pequena mosca/ Os teus xogos de estío,/
00:55
Poem 1: Little Fly / Thy summer's play, /
My thoughtless hand / Has brush'd away.
17
43038
4056
A miña atolondrada man/ Levaron
00:59
Am I not / A fly like thee? /
Or art not thou / A man like me?
18
47118
3394
Non son eu / Unha mosca coma ti?/
Non es ti / Un home coma min?
Poema 2:
Podémonos sentir / Activista ao longo / das mañás da túa vida/
01:02
Poem 2: We can feel / Activist
through your life's / morning /
19
50536
3299
Para ao ver, Papa odio o / non toda a noite
para comezar unha gran outra cousa (...)
01:05
Pauses to see, pope I hate the / Non
all the night to start a / great otherwise (...)
20
53859
4247
Ben, rematouse o tempo.
01:10
Alright, time's up.
21
58130
1359
01:11
Hands up if you think Poem 1
was written by a human.
22
59513
4096
Mans arriba quen crea que o Poema 1
foi escrito por un humano.
Vale, a maioría de vós.
01:17
OK, most of you.
23
65547
1490
Mans arriba quen crea que o Poema 2
foi escrito por un humano.
01:19
Hands up if you think Poem 2
was written by a human.
24
67061
3023
01:23
Very brave of you,
25
71172
1190
Moi valentes,
01:24
because the first one was written
by the human poet William Blake.
26
72855
4285
porque o primeiro foi escrito
polo poeta William Blake.
O segundo foi escrito por un algoritmo
01:29
The second one was written by an algorithm
27
77784
2949
01:32
that took all the language
from my Facebook feed on one day
28
80757
3692
que colleu toda a linguaxe da miña conta
de Facebook nun só día
01:36
and then regenerated it algorithmically,
29
84473
2763
e logo rexenerouno algoritmicamente,
01:39
according to methods that I'll describe
a little bit later on.
30
87260
3590
seguindo métodos que describirei
brevemente máis adiante
01:43
So let's try another test.
31
91218
2404
Entón vamos a intentar outra proba.
01:46
Again, you haven't got ages to read this,
32
94398
2093
De novo, non tedes toda a vida
para ler isto,
01:48
so just trust your gut.
33
96515
1612
confiade no voso instinto.
01:50
Poem 1: A lion roars and a dog barks.
It is interesting / and fascinating
34
98151
4045
Poema 1: Un león ruxe e o can ladra.
É interesante / é fascinante
que o paxaro voará e non /
ruxirá ou ladrará.
01:54
that a bird will fly and not / roar
or bark. Enthralling stories about animals
35
102220
4303
Cautivadoras historias sobre animais
están nos meus soños
e cantareinos todos se eu/
01:58
are in my dreams and I will sing them all
if I / am not exhausted or weary.
36
106547
4060
non estou exhausto ou agotado.
02:02
Poem 2: Oh! kangaroos, sequins, chocolate
sodas! / You are really beautiful!
37
110631
3985
Poema 2: Oh! canguros, abelorios,
sodas de chocolate!/
Sodes realmente belos!
Perlas, / harmónicas, lambetadas,
aspirinas!
02:06
Pearls, / harmonicas, jujubes, aspirins!
All / the stuff they've always talked about (...)
38
114640
4358
Todas / as cousas
das que sempre se falou (...)
Ben, rematouse o tempo.
02:11
Alright, time's up.
39
119022
1158
02:12
So if you think the first poem
was written by a human,
40
120204
3137
Se pensedes que o primeiro poema,
foi escrito por un humano
02:15
put your hand up.
41
123365
1215
levantade a man.
02:17
OK.
42
125687
1154
Vale.
02:18
And if you think the second poem
was written by a human,
43
126865
2675
E se pensades que o segundo poema
foi escrito por un humano,
02:21
put your hand up.
44
129564
1155
levantade a man.
02:23
We have, more or less, a 50/50 split here.
45
131779
3810
Temos, máis ou menos,
unha división aquí de 50/50.
02:28
It was much harder.
46
136157
1436
Foi moito máis difícil.
02:29
The answer is,
47
137617
1712
Velaquí a resposta,
02:31
the first poem was generated
by an algorithm called Racter,
48
139353
3483
o primeiro poema foi xerado
por un algoritmo chamado Racter,
02:34
that was created back in the 1970s,
49
142860
3002
que foi creado no 1970,
02:37
and the second poem was written
by a guy called Frank O'Hara,
50
145886
3189
e o segundo poema foi escrito
por un tipo chamado Frank O'Hara,
02:41
who happens to be
one of my favorite human poets.
51
149099
2668
quen resulta ser
un dos meus poetas favoritos.
02:44
(Laughter)
52
152631
3058
(Risas)
02:48
So what we've just done now
is a Turing test for poetry.
53
156046
3228
Así que o que acabamos de facer agora
é un test Turing de poesía.
02:52
The Turing test was first proposed
by this guy, Alan Turing, in 1950,
54
160018
4547
O test Turing foi proposto
por primeira vez por este tipo,
Alan Turing, no 1950.
02:56
in order to answer the question,
55
164589
1564
co fin de responder á pregunta,
02:58
can computers think?
56
166177
1637
poden os ordenadores pensar?
Alan Turing
cría que se o ordenador fose capaz
03:00
Alan Turing believed that if
a computer was able
57
168245
2770
03:03
to have a to have a text-based
conversation with a human,
58
171039
3078
de ter un texto basaedo na conversación
cun humano,
03:06
with such proficiency
such that the human couldn't tell
59
174141
2770
con tal dominio que o humano
non puidese dicir
03:08
whether they are talking
to a computer or a human,
60
176935
2966
se están falando cun ordenador
ou cun humano,
03:11
then the computer can be said
to have intelligence.
61
179925
2856
logo poderíase dicir do ordenador
que ten intelixencia.
03:15
So in 2013, my friend
Benjamin Laird and I,
62
183270
3295
Así que no 2013,
o meu amigo Benjamin Laird e eu,
03:18
we created a Turing test
for poetry online.
63
186589
2988
creamos un test Turing online
para a poesía.
03:21
It's called bot or not,
64
189601
1277
Chámase robot ou non,
03:22
and you can go and play it for yourselves.
65
190902
2044
e podedes probalo por vós mesmos.
03:24
But basically, it's the game
we just played.
66
192970
2251
Pero basicamente,
é un xogo ao que xa xogamos.
03:27
You're presented with a poem,
67
195245
1528
Preséntasevos un poema,
03:28
you don't know whether it was written
by a human or a computer
68
196797
3028
e non sabedes se foi
escrito por un humano
ou un ordenador
e tedes que adivinar.
03:31
and you have to guess.
69
199849
1166
Miles e miles de persoas
xa fixeron esta proba online,
03:33
So thousands and thousands
of people have taken this test online,
70
201039
3191
polo que temos os resultados.
03:36
so we have results.
71
204254
1449
03:37
And what are the results?
72
205727
1428
E cales son eses resultados?
03:39
Well, Turing said that if a computer
could fool a human
73
207704
2879
Turing dixo que se un ordenador
poidese enganar a un humano
03:42
30 percent of the time
that it was a human,
74
210607
3019
o 30% do tempo que iso sería un humano,
03:45
then it passes the Turing test
for intelligence.
75
213650
2397
entón pasaría o test Turing por intelixencia.
03:48
We have poems on the bot or not database
76
216625
2438
Temos poemas na base de datos de robot ou non
03:51
that have fooled 65 percent
of human readers into thinking
77
219087
2979
que enganaron ao 65% dos lectores humanos
ao creer
03:54
it was written by a human.
78
222090
1395
que foi escrito por un humano.
03:55
So, I think we have an answer
to our question.
79
223959
2817
Porén, penso que temos unha resposta a nosa pregunta.
03:59
According to the logic of the Turing test,
80
227546
2348
De acordo coa lóxica o test Turing,
pode un ordenador escribir poesía?
04:01
can a computer write poetry?
81
229918
1928
04:03
Well, yes, absolutely it can.
82
231870
2351
Claro, por suposto que pode.
04:07
But if you're feeling
a little bit uncomfortable
83
235782
2346
Pero se vos sentides un pouco molestos
coa resposta, non pasa nada.
04:10
with this answer, that's OK.
84
238152
1927
04:12
If you're having a bunch
of gut reactions to it,
85
240103
2316
se tedes un montón
de reaccións instintivas,
iso tamén está ben
porque isto non é o final da historia.
04:14
that's also OK because
this isn't the end of the story.
86
242443
3205
04:18
Let's play our third and final test.
87
246594
2324
Vamos a xogar o noso terceiro e derradeiro test.
04:22
Again, you're going to have to read
88
250000
1750
De novo, vades a ter que ler
04:23
and tell me which you think is human.
89
251774
1909
e dicirme cal pensades que é humano.
04:25
Poem 1: Reg flags the reason
for pretty flags. / And ribbons.
90
253707
3718
Poema 1: Bandeiras vermellas son a razón
para fermosas bandeiras. / e cenefas.
Cenefas de bandeiras /E materiais pesados /
Razóns para levar materiais pesados. (...)
04:29
Ribbons of flags / And wearing material /
Reasons for wearing material. (...)
91
257449
4321
04:33
Poem 2: A wounded deer leaps
highest, / I've heard the daffodil
92
261794
3918
Poema 2: Un cervo salta ao máis alto, /
xa escoitei ao narciso
Xa escoitei á bandeira hoxe /
Xa escoitei ao cazador contar;/
04:37
I've heard the flag to-day /
I've heard the hunter tell; /
93
265736
3446
Isto non é máis que o éxtase da morte, /
E despois a pausa está case rematada (...)
04:41
'Tis but the ecstasy of death, /
And then the brake is almost done (...)
94
269206
3702
Ok, rematouse o tempo.
04:44
OK, time is up.
95
272932
1599
Mans arriba os que pensedes
que o Poema 1
04:46
So hands up if you think Poem 1
was written by a human.
96
274555
3837
foi escrito por un humano.
Mans arriba os que pensedes
que o Poema 2
04:51
Hands up if you think Poem 2
was written by a human.
97
279973
3038
foi escrito por un humano.
04:55
Whoa, that's a lot more people.
98
283035
2331
Guau!, iso é máis xente do esperado.
Estaredes sorprendidos
de descubrir que o Poema 1
04:58
So you'd be surprised to find that Poem 1
99
286327
2968
05:01
was written by the very
human poet Gertrude Stein.
100
289319
3993
foi escrito pola gran poetisa
Gertrude Stein.
05:06
And Poem 2 was generated
by an algorithm called RKCP.
101
294100
5038
E o Poema 2 foi xerado
por un algoritmo chamado RKCP.
05:11
Now before we go on, let me describe
very quickly and simply,
102
299162
3319
Agora, antes de que sigamos,
deixádeme describir moi rápida e brevemente,
05:14
how RKCP works.
103
302505
1781
cómo funciona RKCP.
05:16
So RKCP is an algorithm
designed by Ray Kurzweil,
104
304873
3850
Pois ben...
RKP é un algoritmo deseñado
por Ray Kurzweill,
05:20
who's a director of engineering at Google
105
308747
2222
director de enxeñería en Google
e un firme crente
da intelixencia artificial
05:22
and a firm believer
in artificial intelligence.
106
310993
2360
05:25
So, you give RKCP a source text,
107
313822
3991
Entón,
vós dades a RKP un texto de orixe,
05:29
it analyzes the source text in order
to find out how it uses language,
108
317837
4469
e él analíza o texto de orixe
co fin de descubrir
como emprega a linguaxe,
05:34
and then it regenerates language
109
322330
1948
e logo rexenera a linguaxe
05:36
that emulates that first text.
110
324302
2528
que imita ese primeiro texto.
05:38
So in the poem we just saw before,
111
326854
2113
Polo que no poema que acabamos de ver,
05:40
Poem 2, the one that you all
thought was human,
112
328991
2625
Poema 2,
o que todos pensastes que era humano,
05:43
it was fed a bunch of poems
113
331640
1550
foi creado
a través dun montón de poemas
05:45
by a poet called Emily Dickinson
114
333214
2035
dunha poetisa chamada Emily Dickinson
observando a maneira na que ela
empregaba a linguaxe,
05:47
it looked at the way she used language,
115
335273
2189
aprendiu o modelo,
05:49
learned the model,
116
337486
1165
e logo xerou un modelo
de acordo a esa mesma estrutura.
05:50
and then it regenerated a model
according to that same structure.
117
338675
4258
Pero o máis importante
que hai que saber de RKCP
05:56
But the important thing to know about RKCP
118
344732
2178
05:58
is that it doesn't know the meaning
of the words it's using.
119
346934
2838
é que non sabe o significado
das palabras que está a usar.
A linguaxe é tan só materia prima,
06:02
The language is just raw material,
120
350359
2276
06:04
it could be Chinese,
it could be in Swedish,
121
352659
2160
podería ser chino, podería ser Sueco,
06:06
it could be the collected language
from your Facebook feed for one day.
122
354843
4179
podería ser a linguaxe recompilada
no día en Facebook
06:11
It's just raw material.
123
359046
1652
é só materia prima.
06:13
And nevertheless, it's able
to create a poem
124
361380
2697
E aínda así, é capaz de crear un poema
06:16
that seems more human
than Gertrude Stein's poem,
125
364101
3327
que parece máis humano
que o poema de Gertrude Stein,
06:19
and Gertrude Stein is a human.
126
367452
2153
e Gertrude Stein é humana.
06:22
So what we've done here is,
more or less, a reverse Turing test.
127
370846
4072
Así que o que fixemos aquí é, máis ou menos,
o contrario o test Turing.
06:27
So Gertrude Stein, who's a human,
is able to write a poem
128
375940
5179
Polo que, Gertrude Stein, humana,
é capaz de escribir un poema
06:33
that fools a majority
of human judges into thinking
129
381143
3738
que leva á maioría
de xuíces humanos a pensar
06:36
that it was written by a computer.
130
384905
1826
que foi escrito por un ordenador.
06:39
Therefore, according to the logic
of the reverse Turing test,
131
387176
4141
Polo tanto, segundo a lóxica revertida
do test de Turing,
06:43
Gertrude Stein is a computer.
132
391341
1916
Gertrude Stein é un ordenador.
06:45
(Laughter)
133
393281
1462
(Risas)
06:47
Feeling confused?
134
395358
1294
Confundidos?
06:49
I think that's fair enough.
135
397193
1515
Bastante xusto.
06:51
So far we've had humans
that write like humans,
136
399546
4116
Ata agora tivemos humanos
que escribiron como humanos,
06:55
we have computers that write
like computers,
137
403686
3111
temos ordenadores
que escriben como ordenadores,
06:58
we have computers that write like humans,
138
406821
3055
temos ordenadores
que escriben como humanos,
07:01
but we also have,
perhaps most confusingly,
139
409900
3632
pero tamén temos,
quizáis máis confusamente,
07:05
humans that write like computers.
140
413556
2375
humanos que escriben como ordenadores.
07:08
So what do we take from all of this?
141
416938
1766
Así que...que sacamos de todo isto?
07:11
Do we take that William Blake
is somehow more of a human
142
419611
3157
Damos por sentado
que William Blake
é dalguna maneira máis humano
07:14
than Gertrude Stein?
143
422792
1249
que Gertrude Stein?
07:16
Or that Gertrude Stein is more
of a computer than William Blake?
144
424065
3046
Ou que Gertrude Stein
é máis ordenador que William Blake?
07:19
(Laughter)
145
427135
1552
(Risas)
07:20
These are questions
I've been asking myself
146
428711
2323
Estas son preguntas
que me preguntei a min mesmo
07:23
for around two years now,
147
431058
1465
durante arredor de dous anos,
07:24
and I don't have any answers.
148
432547
2309
e aínda non teño respostas,
07:26
But what I do have are a bunch of insights
149
434880
2330
Pero o que sí teño
son unha morea de percepcións
07:29
about our relationship with technology.
150
437234
2534
sobre a nosa relación coa tecnoloxía.
07:32
So my first insight is that,
for some reason,
151
440999
3609
Así que a miña primeira percepción
é que,
por algunha razón,
07:36
we associate poetry with being human.
152
444632
3111
asociamos a poesía co ser humano.
07:40
So that when we ask,
"Can a computer write poetry?"
153
448197
3715
Porén cando preguntamos,
"Pode un ordenador escribir poesía?"
07:43
we're also asking,
154
451936
1193
tamén estamos a preguntar,
07:45
"What does it mean to be human
155
453153
1798
" Que siginifica ser humano
07:46
and how do we put boundaries
around this category?
156
454975
3172
e como poñemos límites a esta categoría?
07:50
How do we say who or what
can be part of this category?"
157
458171
3658
Como dicimos
quen ou que pode ser parte desta categoría?
07:54
This is an essentially
philosophical question, I believe,
158
462376
3351
Esta é unha pregunta filosófica esencial, creo,
07:57
and it can't be answered
with a yes or no test,
159
465751
2229
e non pode ser respondida
con un test de sí ou non
08:00
like the Turing test.
160
468004
1327
como o test Turing.
08:01
I also believe that Alan Turing
understood this,
161
469805
3045
Tamén creo que Alan Turing
comprendiu isto,
08:04
and that when he devised
his test back in 1950,
162
472874
3305
e cando ideou o seu test no 1950,
08:08
he was doing it
as a philosophical provocation.
163
476203
2802
el fíxoo como unha provocación filosófica.
08:13
So my second insight is that,
when we take the Turing test for poetry,
164
481124
5541
Polo que a miña segunda percepción
é que, cando realizamos
o test Turing para poesía,
08:18
we're not really testing
the capacity of the computers
165
486689
3460
non estamos realmente probando
a capacidade dos ordenadores
08:22
because poetry-generating algorithms,
166
490173
2893
porque a poesía xerada
mediante algoritmos,
08:25
they're pretty simple and have existed,
more or less, since the 1950s.
167
493090
4563
é bastante simple e xa existiu,
máis ou menos, dende o 1950.
08:31
What we are doing with the Turing
test for poetry, rather,
168
499055
3118
O que estamos a facer
co test Turing de poesía, preferentemente,
08:34
is collecting opinions about what
constitutes humanness.
169
502197
4615
é recolectar opinións
sobre que consitúe a raza humana.
08:40
So, what I've figured out,
170
508313
2729
Así, o que descubrín,
08:43
we've seen this when earlier today,
171
511066
2972
o que xa vimos antes,
08:46
we say that William Blake
is more of a human
172
514062
2478
dixemos que William Blake é máis humano
08:48
than Gertrude Stein.
173
516564
1565
que Gertrude Stein.
08:50
Of course, this doesn't mean
that William Blake
174
518153
2462
Por suposto, isto non significa
que William Blake
08:52
was actually more human
175
520639
1828
fose realmente máis humano
08:54
or that Gertrude Stein
was more of a computer.
176
522491
2327
ou que Gertrude Stein
fose máis un ordenador.
08:57
It simply means that the category
of the human is unstable.
177
525533
4714
Simplemente quere dicir
que a categoría de humano é inestable.
09:03
This has led me to understand
178
531450
2074
Isto levoume a entender
09:05
that the human is not a cold, hard fact.
179
533548
2763
que o ser humano
non é un obxecto frío e duro.
09:08
Rather, it is something
that's constructed with our opinions
180
536832
3132
Senón que é máis ben algo construído
a través das nosas opinións
09:11
and something that changes over time.
181
539988
2855
e que cambia co tempo.
09:16
So my final insight is that
the computer, more or less,
182
544671
4479
Polo que a miña percepción final
é que o ordenador, máis ou menos,
09:21
works like a mirror
that reflects any idea of a human
183
549174
4006
funciona como un espello
que reflicte calquer idea do ser humano
09:25
that we show it.
184
553204
1375
que lle mostremos.
09:26
We show it Emily Dickinson,
185
554958
1884
Mostrámoslle a Emily Dickinson,
09:28
it gives Emily Dickinson back to us.
186
556866
2321
e devólvenos a Emily Dickinson.
09:31
We show it William Blake,
187
559768
1834
Mostrámoslle a William Blake,
09:33
that's what it reflects back to us.
188
561626
2285
e iso é o que nos reflicte a nós.
09:35
We show it Gertrude Stein,
189
563935
1839
Mostrámoslle Gertrude Stein.
09:37
what we get back is Gertrude Stein.
190
565798
2470
o que nos mostra de volta
é a Gertrude Stein.
09:41
More than any other bit of technology,
191
569083
2368
Máis que calquera outra tecnoloxía,
09:43
the computer is a mirror that reflects
any idea of the human we teach it.
192
571475
5165
o ordenador é un espello
que reflicte calquera idea
do ser humano que lle ensinemos.
09:50
So I'm sure a lot of you have been hearing
193
578061
2287
Porén, estou seguro
de que moitos de vós oístes
09:52
a lot about artificial
intelligence recently.
194
580372
2862
un montón sobre intelixencia artifical
ultimamente.
09:56
And much of the conversation is,
195
584694
2830
E a maior parte da conversación é sobre,
10:00
can we build it?
196
588292
1189
podemos creala?
10:02
Can we build an intelligent computer?
197
590383
3135
Podemos crear un ordenador intelixente?
10:05
Can we build a creative computer?
198
593542
2763
Podemos construír un ordenador creativo?
10:08
What we seem to be asking over and over
199
596329
2113
O que parece que nos
preguntamos continuamente
10:10
is can we build a human-like computer?
200
598466
2724
é se podemos crear un humano
como un ordenador?
10:13
But what we've seen just now
201
601961
1556
Pero o que vimos ata agora
10:15
is that the human
is not a scientific fact,
202
603541
3088
é que o ser humano
non é un feito científico,
10:18
that it's an ever-shifting,
concatenating idea
203
606653
3530
iso é unha idea concatenante
e en constante evolución
10:22
and one that changes over time.
204
610207
2531
e unha que cambia co tempo.
10:24
So that when we begin
to grapple with the ideas
205
612762
3152
Polo que cando comezamos a pelear
con estas ideas
10:27
of artificial intelligence in the future,
206
615938
2386
de intelixencia artifical no futuro,
10:30
we shouldn't only be asking ourselves,
207
618348
1905
non deberíamos de preguntarnos,
10:32
"Can we build it?"
208
620277
1368
"Podemos construíla?"
10:33
But we should also be asking ourselves,
209
621669
1894
Pero tamén deberiamos plantearnos,
10:35
"What idea of the human
do we want to have reflected back to us?"
210
623587
3713
"Que idea do humano
queremos reflectir en nós mesmos?"
10:39
This is an essentially philosophical idea,
211
627820
2693
Esta é unha idea filosófica esencial,
10:42
and it's one that can't be answered
with software alone,
212
630537
2997
e é unha que non pode ser respondida
por un software solo,
10:45
but I think requires a moment
of species-wide, existential reflection.
213
633558
4977
pero creo que require
un momento de reflexión existencial
sobre a amplitude da especie.
10:51
Thank you.
214
639040
1153
Graciñas.
10:52
(Applause)
215
640217
2695
(Aplausos)

▲Back to top

ABOUT THE SPEAKER
Oscar Schwartz - Writer and poet
Oscar Schwartz's research and writing concerns the influence of digital technology on culture and human interaction.

Why you should listen

Oscar Schwartz is an Australian writer and poet undertaking a PhD that asks whether a computer can write poetry. His research led to the development of a Turing test for poetry, which is available on a website he cofounded called bot or not.

More profile about the speaker
Oscar Schwartz | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee