Russ Altman: What really happens when you mix medications?
Ras Altman (Russ Altman): Šta se zaista dešava kada mešate lekove?
Russ Altman uses machine learning to better understand adverse effects of medication. Full bio
Double-click the English transcript below to play the video.
and get some tests.
that you have high cholesterol
from medication to treat it.
kako biste to lečili,
da će to da pomogne.
that this is going to work.
je obavila dosta ispitivanja,
a lot of studies, submitted it to the FDA.
Upravi za hranu i lekove.
skeptically, they approved it.
skeptično i odobrili ga.
o tome kako deluje,
of what the side effects are.
of a conversation with your physician
because you've been blue,
kao i obično.
in life quite as much as you usually do.
I think you have some depression.
mislim da imate depresiju.
you another pill."
about two medications.
of people have taken it,
milioni su ih uzimali,
the FDA looked at it -- all good.
je pregledala, sve je u redu.
da bude sve u redu.
these two together?
"post-marketing surveillance,"
„postmarketinški nadzor“,
if bad things are happening
da li se nešto loše dešava
who has several diagnoses
sa nekoliko dijagnoza
Jako mi je stalo do toga.
and really, in my opinion,
i naukom o podacima,
da razumemo ove interakcije
to understand these interactions
of different sources of data
mnogo različitih izvora podataka
when drugs can be used together safely
mogu bezbedno koristiti zajedno,
priču o nauci o podacima.
because that's his name.
to understand how drugs work
moramo da razumemo kako lekovi deluju,
i kako deluju zasebno,
and how they work separately,
je objavila neverovatnu bazu podataka.
an amazing database.
o neželjenim događajima.
download it right now --
svi možete da je sada skinete -
of adverse event reports
o neželjenim događajijma
companies, pharmacists.
kompanija, farmaceuta.
that the patient has,
or side effects, that they experience.
ili nuspojave koje doživljavaju.
that are occurring in America today,
koji se danas javljaju u Americi,
of thousands of drugs.
hiljada lekova.
and we know it's involved with diabetes.
i znamo da je u vezi sa dijabetesom.
glucose response.
da razumemo reakciju glukoze.“
look at the side effects of a drug
da sagleda neželjene efekte leka
is likely to change glucose or not."
nivo glukoze ili ne.“
da menjaju nivo glukoze
that were known to change glucose
koji ne menjaju nivo glukoze
that don't change glucose,
in their side effects?
između njihovih nuspojava?
In urination habits?"
U pogledu vršenja mokrenja?“
veoma dobro sredstvo predviđanja.
to give him a really good predictor.
sa 93 posto verovatnoće tačnosti
with 93 percent accuracy
you have to build his confidence.
morate da mu podignete samopouzdanje.
knows all the drugs that change glucose,
zna sve lekove koji menjaju nivo glukoze
but not really that interesting,
ali nije baš naročito zanimljivo,
što se može objaviti.“
Pretpostavio sam da ćeš to reći.“
I thought you might say that."
pa sam sproveo još jedan eksperiment.
so I did one other experiment.
who were on two drugs,
koji uzimaju dva leka
glucose-changing signals,
signale za promenu nivoa glukoze,
did not change glucose,
sam po sebi ne menja glukozu,
Good idea. Show me the list."
Dobra ideja. Pokaži mi spisak.“
ne naročito zanimljivo.
not very exciting.
was, on the list there were two drugs:
je da su na spisku bila dva leka:
a cholesterol medication.
lek protiv holesterola.
of Americans on those two drugs."
koriste ova dva leka.“
at the time, 15 million on pravastatin,
paroksetin u to vreme
prema našoj proceni, uzimalo je oba.
with their glucose
that he did in the FDA database
koje je on sproveo u bazi Uprave
„I dalje nije za objavljivanje,
with the mumbo jumbo,
sa tim čudesima, sa mašinskim učenjem,
odgovarajuća vrsta dokaza.“
evidence that we have."
electronic medical record.
medicinski zapis Stenforda.
koja je u redu za istraživanje,
that's OK for research,
za identifikaciju,
koje uzimaju ova dva leka
on these two drugs
and thousands of people
koji uzimaju parokesetin i pravastatin.
that take paroxetine and pravastatin.
posebni pacijenti.
and had a glucose measurement,
i imali izmerenu glukozu,
another glucose measurement,
i imali drugu meru glukoze,
prihvatljivog vremenskog perioda -
something like two months.
we found 10 patients.
pronašli smo deset pacijenata.
had a bump in their glucose
je imalo porast glukoze
we call this P and P --
nazivamo ih P i P -
the second one comes up,
zatim nastupa drugi,
20 milligrams per deciliter.
if you're not diabetic,
ako niste dijabetičar,
about a potential diagnosis of diabetes.
na potencijalnu dijagnozu dijabetesa.
od 1,1 prilično ima značaja.
don't have a paper,
and -- give me a break --
šta možemo da uradimo.
at Harvard and Vanderbilt,
sa Harvarda i Vanderbilta -
Vanderbilt in Nashville,
i Vanderbilta u Nešvilu -
medical records similar to ours.
medicinske podatke slične našim.
slične pacijente
similar patients
the glucose measurements
in one week found 40 such patients,
40 takvih pacijenata za nedelju dana,
ista tendencija.
from three diverse medical centers
iz tri različita medicinska centra
getting these two drugs
koji uzimaju ova dva leka
somewhat significantly.
we had left out diabetics,
izostavili smo dijabetičare,
have messed up glucose.
poremećenu glukozu.
at the glucose of diabetics,
per deciliter, not just 20.
za 3,3 mmol/l, ne samo 1,1.
"We've got to publish this."
„Moramo da objavimo ovo.“
dokaze zasnovane na podacima,
podacima iz Stenforda,
was in review, went to the lab.
dok je rad bio pod razmatranjem.
u laboratorijske stvari.
who knew about lab stuff.
but I don't do pipettes.
ali ne koristim pipete.
dajemo lekove.
one P, paroxetine.
i dali im jedan P, paroksetin.
smo dali pravastatin,
of mice both of them.
20 to 60 milligrams per deciliter
za 1,1 do 3,3 mmol/l kod miševa.
informatičkih dokaza,
based on the informatics evidence alone,
ako ovo date miševima, poveća se.
if you give these to mice, it goes up.
could have ended there.
priča se mogla tu završiti.
thinking about all of this,
ali neko je rekao:
of it, but somebody said,
koji uzimaju ova dva leka
who are taking these two drugs
of hyperglycemia.
one new medication or two,
or the one drug you're taking,
ili jedan lek koji uzimaš
their search logs with us,
da podele sa nama unose pretraga,
these kinds of searches.
sprovode takve pretrage.
denied our request.
koji radi na istraživanjima u Majkrosoftu
who works at Microsoft Research
da sprovedemo istraživanje
the Bing searches."
pretrage sa Binga.“
companies in the world,
kompanija na svetu
da se oseća bolje.
to make him feel better.
možda me nisi razumeo.
you might not understand.
da bi pretraživao na Guglu,
to do searches at Google,
for research purposes only."
samo u svrhe istraživanja.“
moj prijatelj sa Majkrosofta.
my friend at Microsoft.
that a regular person might type in
koje bi bilo koja osoba mogla uneti
"urinating a lot," "peeing a lot" --
„učestalo mokrenje“, „često piškanje“ -
koje biste mogli uneti.
of the things you might type in.
koje smo nazvali „dijabetskim rečima“.
that we called the "diabetes words."
that about .5 to one percent
involve one of those words.
obuhvata jednu od ovih reči.
or "Paxil" -- those are synonyms --
ili „Paksil“ - to su sinonimi -
of diabetes-type words,
za reči koje odgovaraju dijabetesu
that there's that "paroxetine" word.
ta reč „paroksetin“.
to about three percent from the baseline.
oko tri posto u odnosu na polaznu liniju.
are present in the query,
i „paroksetin“ i „pravastatin“,
do četvorostruko povećanje
that we were interested in,
koja su nas zanimala
or hyperglycemia-type words.
ili hiperglikemiju.
their side effects indirectly
indirektno govore o svojim nuspojavama
to the attention of the FDA.
pred Upravu za hranu i lekove.
surveillance programs
za nadgledanje društvenih medija
za sprovođenje ovog, i drugima,
for doing this, and others,
either individually or together,
da lekovi, bilo zasebno ili zajedno,
Zašto sam ispričao ovu priču?
Why tell this story?
u podatke velikih i malih razmera
of big data and medium-sized data
interakcije lekova
dejstva lekova.
a new ecosystem
novi ekosistem
and to optimize their use.
i njihovo najoptimalno korišćenje.
at Columbia now.
danas je profesor na Kolumbiji.
na stotinama parova lekova.
for hundreds of pairs of drugs.
very important interactions,
veoma važnih interakcija
is a way that really works
zaista delotvoran
of drugs at a time.
u isto vreme.
on three, five, seven, nine drugs.
pet, sedam, devet lekova.
to their nine-way interaction?
njihovu devetostruku interakciju?
A and B, A and C, A and D,
A i B, A i C, A i D,
D, E, F, G all together,
more effective or less effective
bilo više ili manje efikasnim
that are unexpected?
for us to use data
u kome možemo koristiti podatke
the interaction of drugs.
interakciju lekova.
that we were able to generate
koji smo uspeli da proizvedemo podacima
volunteered their adverse reactions
svoje neželjene reakcije
through themselves, through their doctors,
njih samih, njihovih doktora,
pristup bazama podataka
at Stanford, Harvard, Vanderbilt,
kako bi bile korišćene u istraživanju.
and security -- they should be.
i bezbednosti i treba da budu.
that closes that data off,
koji blokira pristup tim podacima
and it was a little bit of a sad story.
i to je bila pomalo tužna priča.
dijabetes kod nekoga
the two drugs very carefully together,
ta dva leka vrlo pažljivo zajedno,
when you're prescribing.
prilikom propisivanja lekova.
two drugs or three drugs
na povoljan način.
of causing a side effect,
for depression, for diabetes --
depresije, dijabetesa -
TED Talk on a different day,
nekog drugog dana
iste izvore podataka
of drugs in combination
lekova u kombinaciji
of our patients even better?
o našim pacijentima.
ABOUT THE SPEAKER
Russ Altman - Big data techno-optimist and internistRuss Altman uses machine learning to better understand adverse effects of medication.
Why you should listen
Professor of bioengineering, genetics, medicine and computer science at Stanford University, Russ Altman's primary research interests are in the application of computing and informatics technologies to problems relevant to medicine. He is particularly interested in methods for understanding drug actions at molecular, cellular, organism and population levels, including how genetic variation impacts drug response.
Altman received the U.S. Presidential Early Career Award for Scientists and Engineers, a National Science Foundation CAREER Award and Stanford Medical School's graduate teaching award. He has chaired the Science Board advising the FDA Commissioner and currently serves on the NIH Director’s Advisory Committee. He is a clinically active internist, the founder of the PharmGKB knowledge base, and advisor to pharmacogenomics companies.
Russ Altman | Speaker | TED.com