Russ Altman: What really happens when you mix medications?
Russ Altman: Que ocorre cando mesturamos medicamentos?
Russ Altman uses machine learning to better understand adverse effects of medication. Full bio
Double-click the English transcript below to play the video.
e fas análises.
and get some tests.
that you have high cholesterol
que tes o colesterol alto
from medication to treat it.
that this is going to work.
en que funcionará.
a lot of studies, submitted it to the FDA.
moitas análises, enviounas á FDA.
skeptically, they approved it.
con escepticismo, aprobounas.
de como funcionan,
of what the side effects are.
dos efectos secundarios.
of a conversation with your physician
co teu médico,
because you've been blue,
porque estiveches deprimido,
in life quite as much as you usually do.
da vida tanto coma antes.
I think you have some depression.
"Creo que tes depresión.
you another pill."
about two medications.
de dous medicamentos.
of people have taken it,
moita xente a tomou,
the FDA looked at it -- all good.
a FDA revisouna... todo ben.
Pensas que todo debería ir ben.
das dúas xuntas?
these two together?
"post-marketing surveillance,"
"vixilancia poscomercialización",
if bad things are happening
entre dous medicamentos?
who has several diagnoses
a alguén con varios diagnósticos.
Preocúpame moito.
e da informática e, na miña opinión,
and really, in my opinion,
to understand these interactions
para entender estas interaccións
of different sources of data
fontes de información posibles
when drugs can be used together safely
usar xuntos os medicamentos
da ciencia dos datos.
because that's his name.
porque se chama así.
to understand how drugs work
como funcionan os medicamentos
and how they work separately,
unha incrible base de datos.
an amazing database.
download it right now --
calquera pode descargalos...
of adverse event reports
sobre efectos adversos
companies, pharmacists.
empresas, farmacéuticos.
that the patient has,
dos pacientes,
or side effects, that they experience.
secundarios que sofren.
that are occurring in America today,
actuais dos Estados Unidos,
of thousands of drugs.
de miles de medicamentos.
and we know it's involved with diabetes.
e sabemos que ten que ver coa diabetes.
glucose response.
look at the side effects of a drug
os efectos secundarios dun medicamento
is likely to change glucose or not."
que o medicamento altere a glicosa".
that were known to change glucose
que se sabe que alteran a glicosa
that don't change glucose,
que non a alteran,
in their side effects?
entre os efectos secundarios?
In urination habits?"
Dos hábitos urinarios?"
to give him a really good predictor.
para facer un bo método preditivo.
with 93 percent accuracy
cun 93% de precisión
hai que reforzarlle a confianza.
you have to build his confidence.
knows all the drugs that change glucose,
saben qué medicamentos cambian a glicosa,
but not really that interesting,
pero non moi interesante realmente,
I thought you might say that."
Pensei que dirías iso".
so I did one other experiment.
por iso fixen outro experimento.
who were on two drugs,
persoas que tomasen dous fármacos,
glucose-changing signals,
sinais de alteración da glicosa,
did not change glucose,
non alterase a glicosa,
Good idea. Show me the list."
Boa idea. Ensíname a lista".
not very exciting.
apenas interesantes,
que na lista había dous:
was, on the list there were two drugs:
a cholesterol medication.
un medicamento para o colesterol.
of Americans on those two drugs."
toman estes dous medicamentos".
at the time, 15 million on pravastatin,
15 millóns pravastatina,
with their glucose
problemas de glicosa
that he did in the FDA database
que fixo na base de datos da FDA
with the mumbo jumbo,
coa lea esta, coa aprendizaxe automática
non é unha proba evidente".
evidence that we have."
electrónico de Stanford.
electronic medical record.
that's OK for research,
que serve para investigar,
on these two drugs
que toma eses fármacos
and thousands of people
that take paroxetine and pravastatin.
que toman paroxetina e pravastatina,
and had a glucose measurement,
un deles e medisen a glicosa,
another glucose measurement,
e medisen outra vez a glicosa,
something like two months.
algo así como dous meses.
we found 10 patients.
encontramos 10 pacientes.
had a bump in their glucose
tiveron aumento de glicosa
we call this P and P --
—chamámoslles P e P—
the second one comes up,
cando tomaban o segundo,
20 milligrams per deciliter.
20 miligramos por decilitro.
se non somos diabéticos,
if you're not diabetic,
about a potential diagnosis of diabetes.
nun posible diagnóstico de diabetes.
é bastante significativo.
don't have a paper,
and -- give me a break --
-necesito respirar-
at Harvard and Vanderbilt,
de Harvard e Vanderbilt,
Vanderbilt in Nashville,
Vanderbilt en Nashville,
medical records similar to ours.
historias clínicas electrónicas parecidas.
similar patients
the glucose measurements
as medicións de glicosa
in one week found 40 such patients,
nunha semana encontrou 40 pacientes deses,
coa mesma tendencia.
from three diverse medical centers
de tres centros médicos diferentes
getting these two drugs
que tomaban eses dous medicamentos
somewhat significantly.
we had left out diabetics,
deixaramos fóra os diabéticos,
have messed up glucose.
afecta á glicosa.
at the glucose of diabetics,
na glicosa dos diabéticos,
per deciliter, not just 20.
por decilitro, non só 20.
"We've got to publish this."
"Temos que publicalo".
was in review, went to the lab.
o artigo, foi ao laboratorio.
who knew about lab stuff.
que entendía de laboratorio.
but I don't do pipettes.
non traballo con pipetas.
os medicamentos a ratos.
one P, paroxetine.
e démoslles un P, paroxetina.
of mice both of them.
20 to 60 milligrams per deciliter
de 20 a 60 miligramos por decilitro
based on the informatics evidence alone,
só coas probas informáticas,
ao final que poñía
if you give these to mice, it goes up.
se se proba con ratos, aumenta.
could have ended there.
podería acabar aquí,
thinking about all of this,
pensando en todo isto,
of it, but somebody said,
que toman estes dous fármacos
who are taking these two drugs
of hyperglycemia.
de hiperglicemia.
one new medication or two,
un medicamento novo ou dous
or the one drug you're taking,
dos medicamentos que estás tomando.
os rexistros de buscas con nós,
their search logs with us,
these kinds of searches.
ese tipo de buscas.
denied our request.
rexeitou a petición.
who works at Microsoft Research
na Microsoft Research conteillo:
the Bing searches."
as buscas de Bing".
companies in the world,
máis grandes do mundo,
to make him feel better.
facer que se sinta ben.
creo que non entendiches.
you might not understand.
to do searches at Google,
para facer buscas en Google,
for research purposes only."
para usalos en investigación".
era Eric Horvitz.
my friend at Microsoft.
that a regular person might type in
que unha persoa podería teclear
"urinating a lot," "peeing a lot" --
"ouriñar moito", "mexar moito"...
of the things you might type in.
que se poderían escribir.
that we called the "diabetes words."
"palabras de diabetes".
that about .5 to one percent
do 0,5 ao 1 por cento
involve one of those words.
incluían unha desas palabras.
or "Paxil" -- those are synonyms --
ou "Paxil" -son sinónimos-
of diabetes-type words,
das palabras de tipo diabetes,
that there's that "paroxetine" word.
que está a palabra "paroxetina".
to about three percent from the baseline.
a arredor dun 3% da referencia.
are present in the query,
"paroxetina" e"pravastatina",
that we were interested in,
que nos interesaban
or hyperglycemia-type words.
ou con hiperglicemia.
their side effects indirectly
os efectos secundarios indirectamente
to the attention of the FDA.
dos medios sociais
surveillance programs
for doing this, and others,
para facer isto, e outros,
do Twitter, do Facebook,
either individually or together,
por separado ou en conxunto,
Why tell this story?
Por que conto esta historia?
of big data and medium-sized data
ou de tamaño medio
entre medicamentos
a new ecosystem
and to optimize their use.
os medicamentos e optimizar o seu uso.
at Columbia now.
agora é profesor en Columbia.
for hundreds of pairs of drugs.
con centos de pares de medicamentos.
very important interactions,
is a way that really works
realmente funciona
entre medicamentos.
of drugs at a time.
de medicamentos á vez.
on three, five, seven, nine drugs.
tres, cinco, sete, nove medicamentos.
to their nine-way interaction?
coa interacción dos nove?
A and B, A and C, A and D,
A e B, A e C, A e D,
D, E, F, G all together,
D, E, F, G xuntos,
more effective or less effective
máis eficaces ou menos
that are unexpected?
inesperados?
for us to use data
o feito de utilizar datos
the interaction of drugs.
a interacción dos medicamentos.
that we were able to generate
que puidemos xerar
volunteered their adverse reactions
compartir as súas reaccións adversas
through themselves, through their doctors,
entre eles mesmos, dos seus médicos,
at Stanford, Harvard, Vanderbilt,
de Stanford, Harvard, Vanderbilt,
e a seguridade... teñen razón.
and security -- they should be.
that closes that data off,
que impida acceder a eses datos,
and it was a little bit of a sad story.
e foi unha historia algo triste.
the two drugs very carefully together,
os dous medicamentos xuntos con coidado,
when you're prescribing.
two drugs or three drugs
dous ou tres medicamentos
of causing a side effect,
efectos secundarios,
con medicamentos hoxe,
for depression, for diabetes --
a depresión, a diabetes...
TED Talk on a different day,
noutro día,
as mesmas fontes de datos
of drugs in combination
na combinación de medicamentos
of our patients even better?
incluso mellor?
ABOUT THE SPEAKER
Russ Altman - Big data techno-optimist and internistRuss Altman uses machine learning to better understand adverse effects of medication.
Why you should listen
Professor of bioengineering, genetics, medicine and computer science at Stanford University, Russ Altman's primary research interests are in the application of computing and informatics technologies to problems relevant to medicine. He is particularly interested in methods for understanding drug actions at molecular, cellular, organism and population levels, including how genetic variation impacts drug response.
Altman received the U.S. Presidential Early Career Award for Scientists and Engineers, a National Science Foundation CAREER Award and Stanford Medical School's graduate teaching award. He has chaired the Science Board advising the FDA Commissioner and currently serves on the NIH Director’s Advisory Committee. He is a clinically active internist, the founder of the PharmGKB knowledge base, and advisor to pharmacogenomics companies.
Russ Altman | Speaker | TED.com