ABOUT THE SPEAKER
Giorgia Lupi - Information designer
Giorgia Lupi sees beauty in data. She challenges the impersonality that data communicate, designing engaging visual narratives that re-connect numbers to what they stand for: stories, people, ideas.

Why you should listen

What sets Giorgia Lupi apart is her humanistic approach to the world of data.

Her work frequently crosses the divide between digital, print and handcrafted representations of information: primarily, she draws with data. She has a passion for and obsession with data, the material she uses to tell stories, and the lens through which she sees the world.

Data are often considered to be very impersonal, boring and clinical, but Lupi's work proves the opposite. She makes sense of data with a curious mind and a heterogeneous arsenal, which ranges from digital technology to exhausting and repetitive manual labor. She believes we will ultimately unlock the full potential of data only when we embrace their nature, and make them part of our lives, which will inevitably make data more human in the process.

Trained as an architect, Lupi has always been driven by opposing forces: analysis and intuition, logic and beauty, numbers and images. True to these dichotomies, in 2011 she started both her own company and studying for a PhD. She earned her ddoctorate in design at Politecnico di Milano, where she focused on information mapping, and she is now the design director and co-founder of Accurat, a global, data-driven research, design and innovation firm with offices in Milan and New York. She relocated from Italy to New York City, where she now lives.

Thanks to her work and research, Giorgia is a prominent voice in the world of data. She has spoken at numerous events, universities and institutions around the world, including the Museum of Modern Art, the Guggenheim Museum, PopTech Conference, Eyeo Festival, Fast Company Innovation by Design, New York University, Columbia University and the New York Public Library. She has been featured in major international outlets such as the New York Times, The Guardian, the Washington Post, NPR, BBC, TIME magazine, National Geographic, Scientific American, Popular Science, Wired, Vogue, Vanity Fair, Monocle and more. Her work has been exhibited at the Design Museum, the Science Museum, and Somerset House in London; the New York Hall of Science and the Storefront for Art and Architecture in New York; at the Triennale Design Museum and the Design Week in Milan, among others.

With her company, Accurat, she has worked with major international clients including IBM, Google, Microsoft, the United Nations, the World Health Organization, the World Economic Forum, the European Union, the Louis Vuitton-Moet-Hennessy Group, Fiat Chrysler Automobiles, J.P. Morgan Asset Management, Unicredit Group and KPMG Advisory.

Giorgia is the co-author of Dear Data, an aspirational hand-drawn data visualization book that explores the more slippery details of daily life through data, revealing the patterns that inform our decisions and affect our relationships.

Her work is part of the permanent collection of the Museum of Modern Art.

More profile about the speaker
Giorgia Lupi | Speaker | TED.com
TEDNYC

Giorgia Lupi: How we can find ourselves in data

喬姬雅‧露琵: 在數據中找到自己

Filmed:
1,279,894 views

喬姬雅‧露琵說出數據背後的人情味,為死板的數據添上生動的細節。在這場迷人的演說中,她分享了我們如何為數據加上個性,將平凡無奇的日常生活變成一目瞭然的圖表,讓抽象、不可數的內容可以被看見、被感受,並與我們的生活重新連結。
- Information designer
Giorgia Lupi sees beauty in data. She challenges the impersonality that data communicate, designing engaging visual narratives that re-connect numbers to what they stand for: stories, people, ideas. Full bio

Double-click the English transcript below to play the video.

00:12
This is what my last week looked看著 like.
0
760
2880
我上週的生活長這樣。
00:16
What I did,
1
4680
1696
我做了什麼、
00:18
who I was with,
2
6400
1816
和誰在一起、
00:20
the main主要 sensations感覺 I had
for every一切 waking醒來 hour小時 ...
3
8240
3120
清醒時,每個小時的感受......
00:24
If the feeling感覺 came來了 as I thought of my dad
4
12080
2496
是否我思念起了
00:26
who recently最近 passed通過 away,
5
14600
1776
剛過世的父親。
00:28
or if I could have just definitely無疑
avoided避免 the worries and anxieties焦慮.
6
16400
4056
或有些無法避免的煩惱和焦慮。
00:32
And if you think I'm a little obsessive強迫症,
7
20480
1936
若你覺得我有點走火入魔,
00:34
you're probably大概 right.
8
22440
1856
你可能是對的。
00:36
But clearly明確地, from this visualization可視化,
9
24320
2256
但顯然這些視覺化的圖表,
00:38
you can learn學習 much more about me
than from this other one,
10
26600
3296
比起其它方式,讓你更了解我,
00:41
which哪一個 are images圖片 you're
probably大概 more familiar with
11
29920
2976
像是一些大家都很熟悉的圖表,
00:44
and which哪一個 you possibly或者 even have
on your phone電話 right now.
12
32920
2816
可能你手機裡現在就有了。
00:47
Bar酒吧 charts圖表 for the steps腳步 you walked,
13
35760
2216
比如記錄走路步數的長條圖、
00:50
pie餡餅 charts圖表 for the quality質量
of your sleep睡覺 --
14
38000
2376
表示睡眠品質的圓餅圖、
00:52
the path路徑 of your morning早上 runs運行.
15
40400
1720
晨跑的路徑圖......
00:55
In my day job工作, I work with data數據.
16
43280
2296
我的工作就是與數據打交道。
00:57
I run a data數據 visualization可視化 design設計 company公司,
17
45600
2496
我有一間數據視覺化設計公司,
01:00
and we design設計 and develop發展 ways方法
to make information信息 accessible無障礙
18
48120
3336
負責設計和開發
01:03
through通過 visual視覺 representations交涉.
19
51480
2096
視覺化呈現資訊的方式。
01:05
What my job工作 has taught me over the years年份
20
53600
3016
過去幾年的工作經驗告訴我,
01:08
is that to really understand理解 data數據
and their true真正 potential潛在,
21
56640
4216
想要真正了解數據和它的潛力,
01:12
sometimes有時 we actually其實
have to forget忘記 about them
22
60880
3096
有時不能只看表象,
01:16
and see through通過 them instead代替.
23
64000
1760
而是要深入核心。
01:18
Because data數據 are always
just a tool工具 we use to represent代表 reality現實.
24
66440
3576
因為數據只是表達現實的工具。
01:22
They're always used
as a placeholder佔位符 for something else其他,
25
70040
2856
它們只是一些代碼,
01:24
but they are never the real真實 thing.
26
72920
2176
不是實際的狀況。
01:27
But let me step back for a moment時刻
27
75120
1936
讓我退一步說明,
01:29
to when I first understood了解
this personally親自.
28
77080
2480
回到我第一次有所體會的那年。
01:32
In 1994, I was 13 years年份 old.
29
80280
3336
1994 年,我 13 歲,
01:35
I was a teenager青少年 in Italy意大利.
30
83640
1936
一名生活在義大利的年輕人。
01:37
I was too young年輕
to be interested有興趣 in politics政治,
31
85600
2616
當時還小,對政治沒興趣,
01:40
but I knew知道 that a businessman商人,
Silvio西爾維奧 Berlusconi貝盧斯科尼,
32
88240
2496
但我知道有個商人,
叫做貝魯斯柯尼,
01:42
was running賽跑 for president主席
for the moderate中等 right.
33
90760
2560
當時正代表右翼溫和派競選總統。
01:46
We lived生活 in a very liberal自由主義的 town,
34
94120
2016
我住的地方是左派重鎮,
01:48
and my father父親 was a politician政治家
for the Democratic民主的 Party派對.
35
96160
3296
我爸還是民主黨的政治人物。
01:51
And I remember記得 that no one thought
that Berlusconi貝盧斯科尼 could get elected當選 --
36
99480
4336
我還記得,大家都說
貝魯斯柯尼選不上,
01:55
that was totally完全 not an option選項.
37
103840
1760
沒人覺得他會選上。
01:58
But it happened發生.
38
106560
1216
結果他當選了。
01:59
And I remember記得 the feeling感覺 very vividly生動地.
39
107800
2536
當時的感受我仍記憶猶新。
02:02
It was a complete完成 surprise,
40
110360
1856
完全出乎我們的意料,
02:04
as my dad promised許諾 that in my town
he knew知道 nobody沒有人 who voted for him.
41
112240
5040
我爸信誓旦旦地說,
鎮上不會有人投給他。
02:10
This was the first time
42
118720
1496
這是第一次,
02:12
when the data數據 I had gave me
a completely全然 distorted扭曲 image圖片 of reality現實.
43
120240
4560
我收集的數據與現實有落差。
02:17
My data數據 sample樣品 was actually其實
pretty漂亮 limited有限 and skewed偏斜,
44
125280
3296
我的數據樣本既狹隘又偏頗,
02:20
so probably大概 it was because of that,
I thought, I lived生活 in a bubble泡沫,
45
128600
3736
也因此我覺得我只活在同溫層,
02:24
and I didn't have enough足夠 chances機會
to see outside of it.
46
132360
2600
沒機會看到外面的真實情況。
02:28
Now, fast-forward快進 to November十一月 8, 2016
47
136080
3776
接著快轉到 2016 年 11 月 8 日。
02:31
in the United聯合的 States狀態.
48
139880
1200
美國的總統大選。
02:33
The internet互聯網 polls民意調查,
49
141960
1296
網路民調、
02:35
statistical統計 models楷模,
50
143280
1376
統計模型、
02:36
all the pundits專家 agreeing同意 on a possible可能
outcome結果 for the presidential總統 election選舉.
51
144680
4816
專家學者都說希拉蕊會贏。
02:41
It looked看著 like we had
enough足夠 information信息 this time,
52
149520
2616
好像這一次我們的資訊很充足,
02:44
and many許多 more chances機會 to see outside
the closed關閉 circle we lived生活 in --
53
152160
4096
而且有更多機會看到,
同溫層以外的世界。
02:48
but we clearly明確地 didn't.
54
156280
1320
但我們根本沒有。
02:50
The feeling感覺 felt very familiar.
55
158040
2096
這感覺似曾相識。
02:52
I had been there before.
56
160160
1480
我以前就經歷過。
02:54
I think it's fair公平 to say
the data數據 failed失敗 us this time --
57
162360
2856
這次真的可以說數據騙了我們,
02:57
and pretty漂亮 spectacularly壯觀.
58
165240
1856
而且騙慘了。
02:59
We believed相信 in data數據,
59
167120
1696
我們太相信數據了,
03:00
but what happened發生,
60
168840
1416
結果呢?
03:02
even with the most respected尊敬 newspaper報紙,
61
170280
2696
連最權威的報紙,
03:05
is that the obsession困擾 to reduce減少 everything
to two simple簡單 percentage百分比 numbers數字
62
173000
4696
都只想將所有事情
03:09
to make a powerful強大 headline標題
63
177720
1976
簡化成兩位數的支持率,
03:11
made製作 us focus焦點 on these two digits數字
64
179720
2056
製作出最聳動的標題,
03:13
and them alone單獨.
65
181800
1200
讓大眾只看到數字。
03:15
In an effort功夫 to simplify簡化 the message信息
66
183560
2056
他們費盡心思簡化資料,
03:17
and draw a beautiful美麗,
inevitable必然 red and blue藍色 map地圖,
67
185640
3416
畫出精美的紅藍分布圖,
03:21
we lost丟失 the point completely全然.
68
189080
1880
我們完全失去焦點。
03:23
We somehow不知何故 forgot忘記
that there were stories故事 --
69
191440
2136
我們忘記數據背後的故事,
03:25
stories故事 of human人的 beings眾生
behind背後 these numbers數字.
70
193600
2360
數字背後關於人的故事。
03:29
In a different不同 context上下文,
71
197240
1576
這邊要岔個題,
03:30
but to a very similar類似 point,
72
198840
1656
但要說的道理是一樣的,
03:32
a peculiar奇特 challenge挑戰 was presented呈現
to my team球隊 by this woman女人.
73
200520
3896
這名女子向我的團隊
提出了一個特殊的挑戰。
03:36
She came來了 to us with a lot of data數據,
74
204440
2376
她帶著一堆數據找上我們,
03:38
but ultimately最終 she wanted to tell
one of the most humane人道 stories故事 possible可能.
75
206840
4416
但最終她想要說出的,
就是一個最有人情味的故事。
03:43
She's Samantha薩曼莎 CristoforettiCristoforetti.
76
211280
1696
這個人就是
薩曼莎‧克里斯托福雷蒂。
03:45
She has been the first
Italian意大利 woman女人 astronaut宇航員,
77
213000
2576
她是義大利第一位女太空人,
03:47
and she contacted聯繫 us before being存在 launched推出
78
215600
2496
她在出任務前找上我們,
03:50
on a six-month-long六個月之久 expedition遠征
to the International國際 Space空間 Station.
79
218120
3896
她要到國際太空站待六個月。
03:54
She told us, "I'm going to space空間,
80
222040
2216
她告訴我們:「我要上太空了,
03:56
and I want to do something meaningful富有意義的
with the data數據 of my mission任務
81
224280
3096
我想用任務中的數據,
03:59
to reach達到 out to people."
82
227400
1240
和社會大眾交流。」
04:01
A mission任務 to the
International國際 Space空間 Station
83
229600
2536
一趟國際太空站的任務,
04:04
comes with terabytes兆兆字節 of data數據
84
232160
2096
會有好幾兆位元組的數據,
04:06
about anything you can possibly或者 imagine想像 --
85
234280
2376
你能想到的資料都有:
04:08
the orbits軌道 around Earth地球,
86
236680
1496
環繞地球的軌道數據、
04:10
the speed速度 and position位置 of the ISSISS
87
238200
2096
國際太空站的速率和位置、
04:12
and all of the other thousands數千
of live生活 streams from its sensors傳感器.
88
240320
3680
還有感應器上一大堆的即時資訊。
04:16
We had all of the hard data數據
we could think of --
89
244840
2896
我們握有太空任務的所有數據,
04:19
just like the pundits專家
before the election選舉 --
90
247760
2416
專家學者在大選前也都有數據,
04:22
but what is the point
of all these numbers數字?
91
250200
2976
但這些數字到底可以做什麼?
04:25
People are not interested有興趣
in data數據 for the sake清酒 of it,
92
253200
2736
大家對數據本身根本沒興趣,
04:27
because numbers數字 are never the point.
93
255960
1855
因為數字不是重點。
04:29
They're always the means手段 to an end結束.
94
257839
1961
數據只是了解現實的手段。
04:32
The story故事 we needed需要 to tell
95
260839
1777
我們要說的故事是,
04:34
is that there is a human人的 being存在
in a teeny蠅頭 box
96
262640
2496
在這個小箱子裡有個人,
04:37
flying飛行 in space空間 above以上 your head,
97
265160
2256
正在你頭上的外太空飛行,
04:39
and that you can actually其實 see her
with your naked eye on a clear明確 night.
98
267440
4096
而且你能在清朗的夜空
用肉眼看見她。
04:43
So we decided決定 to use data數據
to create創建 a connection連接
99
271560
3096
所以我們要用數據創造連結,
04:46
between之間 Samantha薩曼莎 and all of the people
looking at her from below下面.
100
274680
4056
連結薩曼莎和地上的我們。
04:50
We designed設計 and developed發達
what we called "Friends in Space空間,"
101
278760
3176
我們設計並開發了
「太空中的朋友」,
04:53
a web捲筒紙 application應用 that simply只是
lets讓我們 you say "hello你好" to Samantha薩曼莎
102
281960
4656
它是一個網路應用程式
可以讓你從所在地透過網頁,
跟薩曼莎說「哈囉」,
04:58
from where you are,
103
286640
1256
04:59
and "hello你好" to all the people
who are online線上 at the same相同 time
104
287920
3536
同時也可以跟線上的
全球網友們說「哈囉」。
05:03
from all over the world世界.
105
291480
1520
05:05
And all of these "hellos打著招呼"
left visible可見 marks分數 on the map地圖
106
293640
3456
如果薩曼莎經過這些「哈囉」,
05:09
as Samantha薩曼莎 was flying飛行 by
107
297120
2016
地圖上就會有記號,
05:11
and as she was actually其實
waving揮手 back every一切 day at us
108
299160
3376
她每天也都從國際太空站,
05:14
using運用 Twitter推特 from the ISSISS.
109
302560
1680
透過推特跟大家互動。
05:16
This made製作 people see the mission's訪問團 data數據
from a very different不同 perspective透視.
110
304880
4976
這讓大家用非常不同的角度,
去看任務的數據。
05:21
It all suddenly突然 became成為 much more
about our human人的 nature性質 and our curiosity好奇心,
111
309880
4696
讓一切更貼近人性並
引發我們的好奇心,
05:26
rather than technology技術.
112
314600
1656
而不只是冷冰冰的科技。
05:28
So data數據 powered動力 the experience經驗,
113
316280
2336
數據能強化體驗,
05:30
but stories故事 of human人的 beings眾生
were the drive駕駛.
114
318640
2400
但人的故事才是關鍵。
05:34
The very positive response響應
of its thousands數千 of users用戶
115
322840
3336
數千位使用者的正面回饋,
05:38
taught me a very important重要 lesson --
116
326200
1936
給我上了非常重要的一課:
05:40
that working加工 with data數據
means手段 designing設計 ways方法
117
328160
2856
與數據為伍就是要設計出
05:43
to transform轉變 the abstract抽象
and the uncountable不可數的
118
331040
2736
可以把抽象、不可數的概念,
05:45
into something that can be seen看到,
felt and directly reconnected重新連接
119
333800
4016
轉化成看得見、感受得到、
05:49
to our lives生活 and to our behaviors行為,
120
337840
2296
並直接與生活和行為
重新連結的方法,
05:52
something that is hard to achieve實現
121
340160
1856
有時候很難做到,
05:54
if we let the obsession困擾 for the numbers數字
and the technology技術 around them
122
342040
3896
如果我們只著迷於數字及科技,
05:57
lead us in the process處理.
123
345960
1280
就會走偏掉。
06:00
But we can do even more to connect data數據
to the stories故事 they represent代表.
124
348600
4896
但我們能進一步
連結數據與背後的故事。
06:05
We can remove去掉 technology技術 completely全然.
125
353520
2656
不需要科技也辦得到。
06:08
A few少數 years年份 ago, I met會見 this other woman女人,
126
356200
2256
幾年前,我遇見一名女子,
06:10
Stefanie孫燕姿 PosavecPosavec --
127
358480
1376
史黛芬妮‧波薩維克。
06:11
a London-based總部設在倫敦 designer設計師 who shares分享 with me
the passion and obsession困擾 about data數據.
128
359880
5816
她是住倫敦的設計師,
跟我一樣對數據癡迷。
06:17
We didn't know each other,
129
365720
1336
我們之前不認識,
06:19
but we decided決定 to run
a very radical激進 experiment實驗,
130
367080
3256
但我們做了一個大膽的實驗,
06:22
starting開始 a communication通訊 using運用 only data數據,
131
370360
2536
就是只用數據交談,
06:24
no other language語言,
132
372920
1336
而不是語言。
06:26
and we opted選擇 for using運用 no technology技術
whatsoever任何 to share分享 our data數據.
133
374280
4616
而且不用任何科技當媒介。
06:30
In fact事實, our only means手段 of communication通訊
134
378920
2896
事實上,我們聯絡的唯一管道,
06:33
would be through通過
the old-fashioned過時 post崗位 office辦公室.
135
381840
2856
就是最老派的郵政系統。
06:36
For "Dear Data數據," every一切 week for one year,
136
384720
2456
《親愛的數據》計畫長達一年,
06:39
we used our personal個人 data數據
to get to know each other --
137
387200
3456
我們每週透過數據了解對方。
06:42
personal個人 data數據 around weekly每週
shared共享 mundane平凡 topics主題,
138
390680
3656
每週都是很普通的一些主題:
06:46
from our feelings情懷
139
394360
1216
從各自的情緒、
06:47
to the interactions互動 with our partners夥伴,
140
395600
1856
到跟另一半的互動、
06:49
from the compliments讚美 we received收到
to the sounds聲音 of our surroundings環境.
141
397480
3160
收到的讚美或周圍的聲音。
06:53
Personal個人 information信息
that we would then manually手動 hand draw
142
401480
3536
這些資訊我們都手繪在
06:57
on a postcard-size明信片尺寸 sheet of paper
143
405040
2496
明信片大小的表格上,
06:59
that we would every一切 week
send發送 from London倫敦 to New York紐約,
144
407560
2936
每週她會從倫敦寄明信片到
07:02
where I live生活,
145
410520
1256
我住的紐約,
07:03
and from New York紐約 to London倫敦,
where she lives生活.
146
411800
2200
我也從紐約寄到她住的倫敦。
07:06
The front面前 of the postcard明信片
is the data數據 drawing畫畫,
147
414480
3696
明信片的正面是手繪的圖表,
07:10
and the back of the card
148
418200
1296
卡片的背面,
07:11
contains包含 the address地址
of the other person, of course課程,
149
419520
2429
除了對方的地址,
07:13
and the legend傳說 for how
to interpret our drawing畫畫.
150
421973
2640
還有前面圖表的註解。
07:17
The very first week into the project項目,
151
425640
2016
計畫開始的第一週,
07:19
we actually其實 chose選擇
a pretty漂亮 cold and impersonal非人的 topic話題.
152
427680
3056
我們選了個很生冷、客套主題。
07:22
How many許多 times do we
check the time in a week?
153
430760
3200
「我們一週內會看幾次錶?」
07:26
So here is the front面前 of my card,
154
434720
1936
這是我畫的紀錄,
07:28
and you can see that every一切 little symbol符號
155
436680
1976
上面的那些小記號,
07:30
represents代表 all of the times
that I checked檢查 the time,
156
438680
3416
就是我每次看時間的記錄,
07:34
positioned定位的 for days
and different不同 hours小時 chronologically按時間順序 --
157
442120
3376
按照每天、每小時依序紀錄,
07:37
nothing really complicated複雜 here.
158
445520
2040
其實不會很複雜。
07:40
But then you see in the legend傳說
159
448200
1576
但在註解這邊,
07:41
how I added添加 anecdotal傳聞 details細節
about these moments瞬間.
160
449800
3456
我說明了記號的涵義。
07:45
In fact事實, the different不同 types類型 of symbols符號
indicate表明 why I was checking檢查 the time --
161
453280
4576
不同的記號代表不同的理由,
07:49
what was I doing?
162
457880
1216
當時在幹嘛?
07:51
Was I bored無聊? Was I hungry飢餓?
163
459120
1696
無聊嗎?餓了嗎?
07:52
Was I late晚了?
164
460840
1216
遲到了嗎?
07:54
Did I check it on purpose目的
or just casually胡亂 glance一瞥 at the clock時鐘?
165
462080
3216
我是認真看時間,
還是隨意瞄一下?
07:57
And this is the key part部分 --
166
465320
2256
這些才是關鍵,
07:59
representing代表 the details細節
of my days and my personality個性
167
467600
3696
我每天、個性上的細節,
08:03
through通過 my data數據 collection採集.
168
471320
1936
透過數據表現出來。
08:05
Using運用 data數據 as a lens鏡片 or a filter過濾
to discover發現 and reveal揭示, for example,
169
473280
4696
把數據當鏡頭或濾鏡,
去發現和揭露,比如說,
08:10
my never-ending沒完沒了 anxiety焦慮 for being存在 late晚了,
170
478000
2176
就算我一定會準時到,
我仍對遲到這件事非常焦慮,
08:12
even though雖然 I'm absolutely絕對 always on time.
171
480200
2200
08:16
Stefanie孫燕姿 and I spent花費 one year
collecting蒐集 our data數據 manually手動
172
484200
4096
我們花了一年收集對方的數據,
08:20
to force us to focus焦點 on the nuances細微之處
that computers電腦 cannot不能 gather收集 --
173
488320
4496
專注在電腦抓不到的細節——
08:24
or at least最小 not yet然而 --
174
492840
1536
至少目前還無法收集,
08:26
using運用 data數據 also to explore探索 our minds頭腦
and the words we use,
175
494400
3496
用數據去了解想法、用字遣詞,
08:29
and not only our activities活動.
176
497920
1936
而不只是行為。
08:31
Like at week number three,
177
499880
1416
像在第三週,
08:33
where we tracked追踪 the "thank yous你的"
we said and were received收到,
178
501320
3816
我們記錄了道謝和被道謝情況,
08:37
and when I realized實現 that I thank
mostly大多 people that I don't know.
179
505160
4656
才發現我常和不認識的人道謝。
08:41
Apparently顯然地 I'm a compulsive強迫 thankerthanker
to waitresses女服務員 and waiters服務員,
180
509840
4336
顯然我會制式地向服務生道謝,
08:46
but I definitely無疑 don't thank enough足夠
the people who are close to me.
181
514200
3160
對身邊的人卻沒那麼客氣。
08:51
Over one year,
182
519000
1256
一年以後,
08:52
the process處理 of actively積極地 noticing注意到
and counting數數 these types類型 of actions行動
183
520280
4496
有意識地關注、記錄這些事,
08:56
became成為 a ritual儀式.
184
524800
1296
變成了一個習慣。
08:58
It actually其實 changed ourselves我們自己.
185
526120
2056
我們開始有些改變。
09:00
We became成為 much more
in tune調 with ourselves我們自己,
186
528200
2696
我們更清楚自己的步調,
09:02
much more aware知道的 of our behaviors行為
and our surroundings環境.
187
530920
3120
更了解自己的行為和周遭環境。
09:06
Over one year, Stefanie孫燕姿 and I
connected連接的 at a very deep level水平
188
534680
2976
一年後,因為這個計畫,
09:09
through通過 our shared共享 data數據 diary日記,
189
537680
2016
我們兩個有了很深的牽絆。
09:11
but we could do this only because
we put ourselves我們自己 in these numbers數字,
190
539720
4296
這都是因為我們在數字之外,
09:16
adding加入 the contexts上下文
of our very personal個人 stories故事 to them.
191
544040
3976
加上了自己的故事。
09:20
It was the only way
to make them truly meaningful富有意義的
192
548040
2456
數據因此有了意義,
09:22
and representative代表 of ourselves我們自己.
193
550520
2200
因此能代表我們。
09:26
I am not asking you
to start開始 drawing畫畫 your personal個人 data數據,
194
554480
3096
我不是要大家開始手繪數據,
09:29
or to find a pen鋼筆 pal朋友 across橫過 the ocean海洋.
195
557600
2856
或是去找個海外的筆友。
09:32
But I'm asking you to consider考慮 data數據 --
196
560480
2576
是希望今後大家面對數據,
09:35
all kind of data數據 --
197
563080
1456
各式各樣的數據,
09:36
as the beginning開始 of the conversation會話
198
564560
1776
都當成對話的開始,
09:38
and not the end結束.
199
566360
1200
而不是終結。
09:40
Because data數據 alone單獨
will never give us a solution.
200
568080
3176
因為數據本身不會提供解答。
09:43
And this is why data數據 failed失敗 us so badly --
201
571280
2696
所以我們才會一直被數據所騙,
09:46
because we failed失敗 to include包括
the right amount of context上下文
202
574000
3376
因為我們忘記數據背後
09:49
to represent代表 reality現實 --
203
577400
1456
所呈現的現實,
09:50
a nuanced細緻入微, complicated複雜
and intricate錯綜複雜 reality現實.
204
578880
3200
是細微、複雜、盤根錯節的。
09:54
We kept不停 looking at these two numbers數字,
205
582960
2456
我們看到候選人的支持率,
09:57
obsessing沉迷 with them
206
585440
1496
就只看到數字,
09:58
and pretending假裝 that our world世界
could be reduced減少
207
586960
2496
假裝我們的世界可以被簡化成
10:01
to a couple一對 digits數字 and a horse race種族,
208
589480
2336
兩個數字和一場競賽,
10:03
while the real真實 stories故事,
209
591840
1256
然而真實的故事、
10:05
the ones那些 that really mattered要緊,
210
593120
1456
真正重要的事,
10:06
were somewhere某處 else其他.
211
594600
1416
卻被拋在一旁。
10:08
What we missed錯過 looking at these stories故事
only through通過 models楷模 and algorithms算法
212
596040
4416
不要只專注在模型和演算法,
10:12
is what I call "data數據 humanism人道主義."
213
600480
2520
也就是所謂的「數據人文主義」。
10:15
In the Renaissance再生 humanism人道主義,
214
603560
2016
在文藝復興人文主義時代,
10:17
European歐洲的 intellectuals知識分子
215
605600
1616
歐洲的知識分子,
10:19
placed放置 the human人的 nature性質 instead代替 of God
at the center中央 of their view視圖 of the world世界.
216
607240
4920
將眼光從「上帝」轉向「人性」。
10:24
I believe something similar類似
needs需求 to happen發生
217
612800
2216
我覺得類似的轉變,
10:27
with the universe宇宙 of data數據.
218
615040
1776
也該發生在數據的研究。
10:28
Now data數據 are apparently顯然地
treated治療 like a God --
219
616840
2976
現在大家都把數據當上帝來拜,
10:31
keeper管理人 of infallible萬無一失 truth真相
for our present當下 and our future未來.
220
619840
3280
覺得數據是貫通古今的真理。
10:35
The experiences經驗
that I shared共享 with you today今天
221
623840
2896
我今天跟各位分享的經驗,
10:38
taught me that to make data數據 faithfully忠實
representative代表 of our human人的 nature性質
222
626760
5016
就是要讓數據去真實呈現人性,
10:43
and to make sure they will not
mislead誤導 us anymore,
223
631800
3416
而不是再次誤導大眾。
10:47
we need to start開始 designing設計 ways方法
to include包括 empathy同情, imperfection缺陷
224
635240
3696
我們要將同理心、不完美
10:50
and human人的 qualities氣質
225
638960
1576
以及人性,
10:52
in how we collect蒐集, process處理,
analyze分析 and display顯示 them.
226
640560
3720
投入數據的收集、
處裡、分析、呈現。
10:57
I do see a place地點 where, ultimately最終,
227
645280
2976
我相信未來有一天,
11:00
instead代替 of using運用 data數據
only to become成為 more efficient高效,
228
648280
3336
數據不只讓我們更有效率,
11:03
we will all use data數據
to become成為 more humane人道.
229
651640
2800
也讓我們更有人情味。
11:06
Thank you.
230
654880
1216
謝謝。
11:08
(Applause掌聲)
231
656120
4441
(掌聲)
Translated by Aaron Shoo
Reviewed by Yi-Fan Yu

▲Back to top

ABOUT THE SPEAKER
Giorgia Lupi - Information designer
Giorgia Lupi sees beauty in data. She challenges the impersonality that data communicate, designing engaging visual narratives that re-connect numbers to what they stand for: stories, people, ideas.

Why you should listen

What sets Giorgia Lupi apart is her humanistic approach to the world of data.

Her work frequently crosses the divide between digital, print and handcrafted representations of information: primarily, she draws with data. She has a passion for and obsession with data, the material she uses to tell stories, and the lens through which she sees the world.

Data are often considered to be very impersonal, boring and clinical, but Lupi's work proves the opposite. She makes sense of data with a curious mind and a heterogeneous arsenal, which ranges from digital technology to exhausting and repetitive manual labor. She believes we will ultimately unlock the full potential of data only when we embrace their nature, and make them part of our lives, which will inevitably make data more human in the process.

Trained as an architect, Lupi has always been driven by opposing forces: analysis and intuition, logic and beauty, numbers and images. True to these dichotomies, in 2011 she started both her own company and studying for a PhD. She earned her ddoctorate in design at Politecnico di Milano, where she focused on information mapping, and she is now the design director and co-founder of Accurat, a global, data-driven research, design and innovation firm with offices in Milan and New York. She relocated from Italy to New York City, where she now lives.

Thanks to her work and research, Giorgia is a prominent voice in the world of data. She has spoken at numerous events, universities and institutions around the world, including the Museum of Modern Art, the Guggenheim Museum, PopTech Conference, Eyeo Festival, Fast Company Innovation by Design, New York University, Columbia University and the New York Public Library. She has been featured in major international outlets such as the New York Times, The Guardian, the Washington Post, NPR, BBC, TIME magazine, National Geographic, Scientific American, Popular Science, Wired, Vogue, Vanity Fair, Monocle and more. Her work has been exhibited at the Design Museum, the Science Museum, and Somerset House in London; the New York Hall of Science and the Storefront for Art and Architecture in New York; at the Triennale Design Museum and the Design Week in Milan, among others.

With her company, Accurat, she has worked with major international clients including IBM, Google, Microsoft, the United Nations, the World Health Organization, the World Economic Forum, the European Union, the Louis Vuitton-Moet-Hennessy Group, Fiat Chrysler Automobiles, J.P. Morgan Asset Management, Unicredit Group and KPMG Advisory.

Giorgia is the co-author of Dear Data, an aspirational hand-drawn data visualization book that explores the more slippery details of daily life through data, revealing the patterns that inform our decisions and affect our relationships.

Her work is part of the permanent collection of the Museum of Modern Art.

More profile about the speaker
Giorgia Lupi | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee