ABOUT THE SPEAKER
Giorgia Lupi - Information designer
Giorgia Lupi sees beauty in data. She challenges the impersonality that data communicate, designing engaging visual narratives that re-connect numbers to what they stand for: stories, people, ideas.

Why you should listen

What sets Giorgia Lupi apart is her humanistic approach to the world of data.

Her work frequently crosses the divide between digital, print and handcrafted representations of information: primarily, she draws with data. She has a passion for and obsession with data, the material she uses to tell stories, and the lens through which she sees the world.

Data are often considered to be very impersonal, boring and clinical, but Lupi's work proves the opposite. She makes sense of data with a curious mind and a heterogeneous arsenal, which ranges from digital technology to exhausting and repetitive manual labor. She believes we will ultimately unlock the full potential of data only when we embrace their nature, and make them part of our lives, which will inevitably make data more human in the process.

Trained as an architect, Lupi has always been driven by opposing forces: analysis and intuition, logic and beauty, numbers and images. True to these dichotomies, in 2011 she started both her own company and studying for a PhD. She earned her ddoctorate in design at Politecnico di Milano, where she focused on information mapping, and she is now the design director and co-founder of Accurat, a global, data-driven research, design and innovation firm with offices in Milan and New York. She relocated from Italy to New York City, where she now lives.

Thanks to her work and research, Giorgia is a prominent voice in the world of data. She has spoken at numerous events, universities and institutions around the world, including the Museum of Modern Art, the Guggenheim Museum, PopTech Conference, Eyeo Festival, Fast Company Innovation by Design, New York University, Columbia University and the New York Public Library. She has been featured in major international outlets such as the New York Times, The Guardian, the Washington Post, NPR, BBC, TIME magazine, National Geographic, Scientific American, Popular Science, Wired, Vogue, Vanity Fair, Monocle and more. Her work has been exhibited at the Design Museum, the Science Museum, and Somerset House in London; the New York Hall of Science and the Storefront for Art and Architecture in New York; at the Triennale Design Museum and the Design Week in Milan, among others.

With her company, Accurat, she has worked with major international clients including IBM, Google, Microsoft, the United Nations, the World Health Organization, the World Economic Forum, the European Union, the Louis Vuitton-Moet-Hennessy Group, Fiat Chrysler Automobiles, J.P. Morgan Asset Management, Unicredit Group and KPMG Advisory.

Giorgia is the co-author of Dear Data, an aspirational hand-drawn data visualization book that explores the more slippery details of daily life through data, revealing the patterns that inform our decisions and affect our relationships.

Her work is part of the permanent collection of the Museum of Modern Art.

More profile about the speaker
Giorgia Lupi | Speaker | TED.com
TEDNYC

Giorgia Lupi: How we can find ourselves in data

Giorgia Lupi: Como nos encontrar num banco de dados

Filmed:
1,279,894 views

Giorgia Lupi usa dados para contar histórias humanas, somando nuance aos números. Nesta palestra encantadora, ela nos conta como podemos trazer personalidade para os dados, visualizando até os detalhes mais mundanos das nossas vidas diárias e como transformar o abstrato e incontável em algo que possa ser visto, sentido e reconectado diretamente em nossas vidas.
- Information designer
Giorgia Lupi sees beauty in data. She challenges the impersonality that data communicate, designing engaging visual narratives that re-connect numbers to what they stand for: stories, people, ideas. Full bio

Double-click the English transcript below to play the video.

00:12
This is what my last week looked like.
0
760
2880
Assim foi a minha semana passada.
00:16
What I did,
1
4680
1696
O que eu fiz,
00:18
who I was with,
2
6400
1816
com quem estive,
00:20
the main sensations I had
for every waking hour ...
3
8240
3120
os sentimentos principais
que tive em cada hora acordada.
00:24
If the feeling came as I thought of my dad
4
12080
2496
Se o sentimento me ocorreu
ao pensar em meu pai,
00:26
who recently passed away,
5
14600
1776
que faleceu recentemente,
00:28
or if I could have just definitely
avoided the worries and anxieties.
6
16400
4056
ou se eu pudesse ter evitado
preocupações e ansiedades.
00:32
And if you think I'm a little obsessive,
7
20480
1936
Se me acham um pouco obsessiva,
00:34
you're probably right.
8
22440
1856
provavelmente estão certos.
00:36
But clearly, from this visualization,
9
24320
2256
Claramente, nesta apresentação,
00:38
you can learn much more about me
than from this other one,
10
26600
3296
vocês aprendem muito mais sobre mim
do que nesta próxima,
00:41
which are images you're
probably more familiar with
11
29920
2976
provavelmente com imagens mais familiares
00:44
and which you possibly even have
on your phone right now.
12
32920
2816
e que possivelmente vocês
têm em seus telefones.
00:47
Bar charts for the steps you walked,
13
35760
2216
Gráficos de barras para os passos andados,
00:50
pie charts for the quality
of your sleep --
14
38000
2376
gráficos circulares
para a qualidade de sono,
00:52
the path of your morning runs.
15
40400
1720
o caminho das corridas matinais.
00:55
In my day job, I work with data.
16
43280
2296
No meu trabalho, eu lido com dados.
00:57
I run a data visualization design company,
17
45600
2496
Eu dirijo uma empresa de design
de visualização de dados
01:00
and we design and develop ways
to make information accessible
18
48120
3336
e nós criamos e desenvolvemos
formas de tornar os dados acessíveis
01:03
through visual representations.
19
51480
2096
através de representações visuais.
01:05
What my job has taught me over the years
20
53600
3016
O que o meu trabalho
me ensinou através dos anos
01:08
is that to really understand data
and their true potential,
21
56640
4216
é que para entender os dados
e seu potencial verdadeiro,
01:12
sometimes we actually
have to forget about them
22
60880
3096
às vezes temos que nos esquecer deles
01:16
and see through them instead.
23
64000
1760
para enxergar através deles.
01:18
Because data are always
just a tool we use to represent reality.
24
66440
3576
Os dados são só uma ferramenta
que usamos para representar a realidade.
01:22
They're always used
as a placeholder for something else,
25
70040
2856
São sempre usados como substitutos
de algo diferente,
01:24
but they are never the real thing.
26
72920
2176
mas nunca são a realidade em si.
01:27
But let me step back for a moment
27
75120
1936
Permitam-me recuar um momento
para quando eu entendi isso pessoalmente.
01:29
to when I first understood
this personally.
28
77080
2480
01:32
In 1994, I was 13 years old.
29
80280
3336
Em 1994, eu tinha 13 anos.
01:35
I was a teenager in Italy.
30
83640
1936
Eu era uma adolescente na Itália.
01:37
I was too young
to be interested in politics,
31
85600
2616
Eu era jovem demais
para me interessar por política,
01:40
but I knew that a businessman,
Silvio Berlusconi,
32
88240
2496
mas eu sabia que um empresário,
o Silvio Berlusconi,
01:42
was running for president
for the moderate right.
33
90760
2560
tinha se candidatado à presidência
pela direita moderada.
01:46
We lived in a very liberal town,
34
94120
2016
Nós morávamos numa cidade bem pequena,
01:48
and my father was a politician
for the Democratic Party.
35
96160
3296
e meu pai era político
pelo Partido Democrático.
01:51
And I remember that no one thought
that Berlusconi could get elected --
36
99480
4336
Eu me lembro que ninguém pensava
que Berlusconi poderia ser eleito;
01:55
that was totally not an option.
37
103840
1760
não era nem uma opção.
01:58
But it happened.
38
106560
1216
Mas aconteceu.
01:59
And I remember the feeling very vividly.
39
107800
2536
Eu me lembro do sentimento bem fortemente.
02:02
It was a complete surprise,
40
110360
1856
Foi uma surpresa completa,
02:04
as my dad promised that in my town
he knew nobody who voted for him.
41
112240
5040
já que meu pai jurava que ninguém
na minha cidade havia votado para ele.
02:10
This was the first time
42
118720
1496
Foi a primeira vez
02:12
when the data I had gave me
a completely distorted image of reality.
43
120240
4560
que a informação que eu recebi me deu
uma imagem distorcida da realidade.
02:17
My data sample was actually
pretty limited and skewed,
44
125280
3296
Minha informação
era limitada e partidária,
02:20
so probably it was because of that,
I thought, I lived in a bubble,
45
128600
3736
talvez foi por esta razão,
eu pensei, que vivia numa redoma,
02:24
and I didn't have enough chances
to see outside of it.
46
132360
2600
e eu não tinha oportunidades
suficientes para ver fora dela.
02:28
Now, fast-forward to November 8, 2016
47
136080
3776
Avancemos para 8 de novembro de 2016
02:31
in the United States.
48
139880
1200
nos EUA.
02:33
The internet polls,
49
141960
1296
As pesquisas na internet,
02:35
statistical models,
50
143280
1376
os modelos estatísticos,
02:36
all the pundits agreeing on a possible
outcome for the presidential election.
51
144680
4816
todos os especialistas de acordo
sobre o resultado possível da eleição.
02:41
It looked like we had
enough information this time,
52
149520
2616
Parecia que tínhamos informações
suficientes desta vez,
02:44
and many more chances to see outside
the closed circle we lived in --
53
152160
4096
e muito mais chances de ver fora
do círculo no qual vivíamos,
02:48
but we clearly didn't.
54
156280
1320
mas claramente não tínhamos.
02:50
The feeling felt very familiar.
55
158040
2096
O sentimento me era bem familiar.
02:52
I had been there before.
56
160160
1480
Já tinha vivido aquilo antes.
02:54
I think it's fair to say
the data failed us this time --
57
162360
2856
Acho justo dizer que os dados
foram falhos desta vez,
02:57
and pretty spectacularly.
58
165240
1856
de forma espetacular.
02:59
We believed in data,
59
167120
1696
Nós acreditamos em dados,
mas o que aconteceu,
03:00
but what happened,
60
168840
1416
03:02
even with the most respected newspaper,
61
170280
2696
até com o jornal mais respeitado,
03:05
is that the obsession to reduce everything
to two simple percentage numbers
62
173000
4696
é que a obsessão de reduzir tudo
em dois números percentuais simples
03:09
to make a powerful headline
63
177720
1976
para deixar as manchetes mais marcantes
03:11
made us focus on these two digits
64
179720
2056
nos fez focar os dois dígitos, e só.
03:13
and them alone.
65
181800
1200
03:15
In an effort to simplify the message
66
183560
2056
Para simplificar a mensagem
03:17
and draw a beautiful,
inevitable red and blue map,
67
185640
3416
e desenhar um mapa lindo, azul e vermelho,
03:21
we lost the point completely.
68
189080
1880
perdemos o ponto completamente.
03:23
We somehow forgot
that there were stories --
69
191440
2136
De alguma forma, nos esquecemos
que haviam histórias
03:25
stories of human beings
behind these numbers.
70
193600
2360
de seres humanos por trás
daqueles números.
03:29
In a different context,
71
197240
1576
Num contexto diferente,
mas para um ponto similar,
03:30
but to a very similar point,
72
198840
1656
03:32
a peculiar challenge was presented
to my team by this woman.
73
200520
3896
um desafio peculiar foi apresentado
para a minha equipe por esta mulher.
03:36
She came to us with a lot of data,
74
204440
2376
Ela veio a nós com muitos dados,
03:38
but ultimately she wanted to tell
one of the most humane stories possible.
75
206840
4416
mas por fim ela queria nos contar
uma das histórias mais humanas possíveis.
03:43
She's Samantha Cristoforetti.
76
211280
1696
Ela é Samantha Crisforetti,
a primeira italiana astronauta,
03:45
She has been the first
Italian woman astronaut,
77
213000
2576
que nos contactou antes de se lançar
03:47
and she contacted us before being launched
78
215600
2496
03:50
on a six-month-long expedition
to the International Space Station.
79
218120
3896
numa expedição de seis meses
para a Estação Espacial Internacional.
03:54
She told us, "I'm going to space,
80
222040
2216
Ela nos disse: "Eu vou para o espaço,
03:56
and I want to do something meaningful
with the data of my mission
81
224280
3096
e quero fazer algo significante
com os dados da minha missão
03:59
to reach out to people."
82
227400
1240
para alcançar pessoas".
04:01
A mission to the
International Space Station
83
229600
2536
Uma missão para a Estação
Espacial Internacional
04:04
comes with terabytes of data
84
232160
2096
volta com terabytes de dados
sobre tudo o que podemos imaginar:
04:06
about anything you can possibly imagine --
85
234280
2376
as órbitas ao redor da Terra,
a velocidade e a posição da EEI
04:08
the orbits around Earth,
86
236680
1496
04:10
the speed and position of the ISS
87
238200
2096
04:12
and all of the other thousands
of live streams from its sensors.
88
240320
3680
e outras milhões de transmissões
diretas de seus sensores.
04:16
We had all of the hard data
we could think of --
89
244840
2896
Tínhamos todos os dados imagináveis,
04:19
just like the pundits
before the election --
90
247760
2416
assim como os especialistas
antes das eleições,
04:22
but what is the point
of all these numbers?
91
250200
2976
mas qual a utilidade
de todos esses números?
04:25
People are not interested
in data for the sake of it,
92
253200
2736
As pessoas não se interessam
nos dados em si,
04:27
because numbers are never the point.
93
255960
1855
porque os números nunca são o propósito.
04:29
They're always the means to an end.
94
257839
1961
São sempre o meio para um fim.
04:32
The story we needed to tell
95
260839
1777
A história que tínhamos que contar
04:34
is that there is a human being
in a teeny box
96
262640
2496
é que existe um ser humano
numa caixinha pequena
04:37
flying in space above your head,
97
265160
2256
voando para o espaço
em cima das nossas cabeças,
04:39
and that you can actually see her
with your naked eye on a clear night.
98
267440
4096
e que podemos vê-la a olhos nus
numa noite clara.
04:43
So we decided to use data
to create a connection
99
271560
3096
Decidimos usar os dados
para criar uma conexão
04:46
between Samantha and all of the people
looking at her from below.
100
274680
4056
entre Samantha e todas as pessoas
olhando para ela daqui debaixo.
04:50
We designed and developed
what we called "Friends in Space,"
101
278760
3176
Criamos e desenvolvemos
o que chamamos de "Friends in Space",
04:53
a web application that simply
lets you say "hello" to Samantha
102
281960
4656
um aplicativo que nos permite
dizer "oi" para a Samantha
04:58
from where you are,
103
286640
1256
de onde estamos,
04:59
and "hello" to all the people
who are online at the same time
104
287920
3536
e "oi" para o mundo todo,
on-line ao mesmo tempo.
05:03
from all over the world.
105
291480
1520
05:05
And all of these "hellos"
left visible marks on the map
106
293640
3456
Todos esses "ois" deixaram
marcas visíveis no mapa
05:09
as Samantha was flying by
107
297120
2016
quando Samantha sobrevoava
05:11
and as she was actually
waving back every day at us
108
299160
3376
e ela acenava para nós todos os dias
usando o Twitter na EEI.
05:14
using Twitter from the ISS.
109
302560
1680
05:16
This made people see the mission's data
from a very different perspective.
110
304880
4976
Assim, podíamos ver os dados da missão
de uma perspectiva bem diferente.
05:21
It all suddenly became much more
about our human nature and our curiosity,
111
309880
4696
De repente, tudo se tratava mais
da natureza humana e de nossa curiosidade,
05:26
rather than technology.
112
314600
1656
do que da tecnologia.
05:28
So data powered the experience,
113
316280
2336
Assim os dados motivaram a experiência,
05:30
but stories of human beings
were the drive.
114
318640
2400
mas as histórias de seres humanos
eram o ímpeto.
05:34
The very positive response
of its thousands of users
115
322840
3336
As respostas positivas
de milhares de usuários
05:38
taught me a very important lesson --
116
326200
1936
me ensinaram uma lição importante:
05:40
that working with data
means designing ways
117
328160
2856
trabalhar com dados significa
criar caminhos
05:43
to transform the abstract
and the uncountable
118
331040
2736
para transformar o abstrato e o incontável
05:45
into something that can be seen,
felt and directly reconnected
119
333800
4016
em algo que pode ser visto,
sentido e reconectado diretamente
05:49
to our lives and to our behaviors,
120
337840
2296
em nossas vidas e nosso comportamento,
05:52
something that is hard to achieve
121
340160
1856
algo difícil de realizar
05:54
if we let the obsession for the numbers
and the technology around them
122
342040
3896
se deixarmos a obsessão pelos números
e a tecnologia que os cerca
05:57
lead us in the process.
123
345960
1280
conduzir o processo.
06:00
But we can do even more to connect data
to the stories they represent.
124
348600
4896
Podemos fazer até mais para conectar
dados com as histórias que representam.
06:05
We can remove technology completely.
125
353520
2656
Podemos remover a tecnologia por completo.
06:08
A few years ago, I met this other woman,
126
356200
2256
Uns anos atrás, conheci outra mulher,
06:10
Stefanie Posavec --
127
358480
1376
a Stefanie Posavec,
06:11
a London-based designer who shares with me
the passion and obsession about data.
128
359880
5816
uma designer enraizada em Londres,
com a mesma paixão e obsessão
que eu tenho pelos dados.
06:17
We didn't know each other,
129
365720
1336
Não nos conhecíamos, mas decidimos
fazer um experimento muito radical:
06:19
but we decided to run
a very radical experiment,
130
367080
3256
06:22
starting a communication using only data,
131
370360
2536
começar uma conversa usando somente dados,
06:24
no other language,
132
372920
1336
e nenhuma outra linguagem,
06:26
and we opted for using no technology
whatsoever to share our data.
133
374280
4616
e optamos por não usar nenhuma
tecnologia para compartilhar os dados.
06:30
In fact, our only means of communication
134
378920
2896
Nosso único meio de comunicação
seria o bom e velho correio.
06:33
would be through
the old-fashioned post office.
135
381840
2856
Para "Queridos Dados",
todas as semanas, por um ano,
06:36
For "Dear Data," every week for one year,
136
384720
2456
06:39
we used our personal data
to get to know each other --
137
387200
3456
usamos dados pessoais
para conhecermos uma a outra:
06:42
personal data around weekly
shared mundane topics,
138
390680
3656
dados pessoais compartilhados
semanalmente sobre tópicos cotidianos,
06:46
from our feelings
139
394360
1216
desde nossos sentimentos
a interações com nossos companheiros,
06:47
to the interactions with our partners,
140
395600
1856
06:49
from the compliments we received
to the sounds of our surroundings.
141
397480
3160
desde elogios que recebemos,
a sons ao nosso redor.
06:53
Personal information
that we would then manually hand draw
142
401480
3536
Informações pessoais
que desenhamos manualmente
06:57
on a postcard-size sheet of paper
143
405040
2496
numa folha do tamanho de um cartão postal
06:59
that we would every week
send from London to New York,
144
407560
2936
que mandávamos semanalmente
de Londres a Nova Iorque,
07:02
where I live,
145
410520
1256
onde eu moro,
07:03
and from New York to London,
where she lives.
146
411800
2200
e de Nova Iorque a Londres, onde ela mora.
07:06
The front of the postcard
is the data drawing,
147
414480
3696
Na frente do cartão postal ficava
o desenho dos dados,
07:10
and the back of the card
148
418200
1296
e o verso do cartão continha
o endereço da outra pessoa, claro,
07:11
contains the address
of the other person, of course,
149
419520
2429
e a legenda de como interpretar o desenho.
07:13
and the legend for how
to interpret our drawing.
150
421973
2640
07:17
The very first week into the project,
151
425640
2016
Na primeira semana do projeto,
07:19
we actually chose
a pretty cold and impersonal topic.
152
427680
3056
nós escolhemos um tópico frio e impessoal.
07:22
How many times do we
check the time in a week?
153
430760
3200
Quantas vezes olhamos
que horas eram na semana?
07:26
So here is the front of my card,
154
434720
1936
Aqui está a frente do meu cartão,
e vemos todos os símbolos
07:28
and you can see that every little symbol
155
436680
1976
que representam todas as vezes
que eu olhei as horas,
07:30
represents all of the times
that I checked the time,
156
438680
3416
07:34
positioned for days
and different hours chronologically --
157
442120
3376
marcando os dias e as horas,
cronologicamente,
07:37
nothing really complicated here.
158
445520
2040
nada muito complicado.
07:40
But then you see in the legend
159
448200
1576
Mas aí vemos na legenda
07:41
how I added anecdotal details
about these moments.
160
449800
3456
como eu adicionei detalhes informais
sobre os momentos.
07:45
In fact, the different types of symbols
indicate why I was checking the time --
161
453280
4576
De fato, os símbolos diferentes indicam
a razão de eu consultar as horas,
o que eu estava fazendo.
07:49
what was I doing?
162
457880
1216
07:51
Was I bored? Was I hungry?
163
459120
1696
Estava entediada? Com fome? Atrasada?
07:52
Was I late?
164
460840
1216
07:54
Did I check it on purpose
or just casually glance at the clock?
165
462080
3216
Consultei de propósito ou olhei
o relógio de relance casualmente?
07:57
And this is the key part --
166
465320
2256
Esta parte é a chave:
07:59
representing the details
of my days and my personality
167
467600
3696
representar os detalhes dos meus dias
e a minha personalidade
08:03
through my data collection.
168
471320
1936
através da coleta de dados.
08:05
Using data as a lens or a filter
to discover and reveal, for example,
169
473280
4696
Usar dados como uma lente ou filtro
para descobrir e revelar, por exemplo,
08:10
my never-ending anxiety for being late,
170
478000
2176
a minha ansiedade contínua
de não me atrasar,
08:12
even though I'm absolutely always on time.
171
480200
2200
apesar de eu chegar sempre na hora.
08:16
Stefanie and I spent one year
collecting our data manually
172
484200
4096
Stefanie e eu passamos um ano
coletando nossos dados manualmente
08:20
to force us to focus on the nuances
that computers cannot gather --
173
488320
4496
para nos forçar a concentrar em nuances
que os computadores não recolhem,
08:24
or at least not yet --
174
492840
1536
pelo menos, por enquanto,
08:26
using data also to explore our minds
and the words we use,
175
494400
3496
usando dados para explorar nossas mentes
e as palavras que usamos,
08:29
and not only our activities.
176
497920
1936
e não só nossas atividades.
08:31
Like at week number three,
177
499880
1416
Na terceira semana,
08:33
where we tracked the "thank yous"
we said and were received,
178
501320
3816
monitoramos os "obrigados"
que dissemos e recebemos,
08:37
and when I realized that I thank
mostly people that I don't know.
179
505160
4656
e então percebi que agradeço
principalmente às pessoas que não conheço.
08:41
Apparently I'm a compulsive thanker
to waitresses and waiters,
180
509840
4336
Aparentemente, sou uma agradecedora
compulsiva de garçons,
08:46
but I definitely don't thank enough
the people who are close to me.
181
514200
3160
mas não agradeço às pessoas
chegadas a mim o suficiente.
08:51
Over one year,
182
519000
1256
Por um ano,
08:52
the process of actively noticing
and counting these types of actions
183
520280
4496
o processo de ativamente
observar e computar nossas ações
08:56
became a ritual.
184
524800
1296
se tornou um ritual, nos modificou.
08:58
It actually changed ourselves.
185
526120
2056
09:00
We became much more
in tune with ourselves,
186
528200
2696
Nos tornamos mais ligadas a nós mesmas,
09:02
much more aware of our behaviors
and our surroundings.
187
530920
3120
muito mais conscientes
do nosso comportamento e arredores.
09:06
Over one year, Stefanie and I
connected at a very deep level
188
534680
2976
Por um ano, Stefanie e eu
nos conectamos de forma profunda
09:09
through our shared data diary,
189
537680
2016
pelos diários de dados que compartilhamos
09:11
but we could do this only because
we put ourselves in these numbers,
190
539720
4296
mas só pudemos fazer isso porque
nos colocamos nos números,
09:16
adding the contexts
of our very personal stories to them.
191
544040
3976
inserindo os contextos
das nossas histórias a eles.
09:20
It was the only way
to make them truly meaningful
192
548040
2456
Foi a única forma de fazê-los
ter significado e nos representar.
09:22
and representative of ourselves.
193
550520
2200
09:26
I am not asking you
to start drawing your personal data,
194
554480
3096
Eu não estou lhes pedindo
para começar a escrever seus dados,
09:29
or to find a pen pal across the ocean.
195
557600
2856
ou achar um amigo de correspondência
do outro lado do oceano.
09:32
But I'm asking you to consider data --
196
560480
2576
Mas estou lhes pedindo
para considerarem os dados,
09:35
all kind of data --
197
563080
1456
de todos os tipos,
09:36
as the beginning of the conversation
198
564560
1776
o começo de uma conversa e não o fim.
09:38
and not the end.
199
566360
1200
09:40
Because data alone
will never give us a solution.
200
568080
3176
Porque dados em si
nunca nos darão uma solução.
09:43
And this is why data failed us so badly --
201
571280
2696
É por isso que os dados falharam,
09:46
because we failed to include
the right amount of context
202
574000
3376
porque nós falhamos em incluir
a quantia certa de contexto
09:49
to represent reality --
203
577400
1456
que representasse a realidade,
09:50
a nuanced, complicated
and intricate reality.
204
578880
3200
uma realidade com nuances e complicada.
09:54
We kept looking at these two numbers,
205
582960
2456
Ficamos olhando para os números,
09:57
obsessing with them
206
585440
1496
obcecados por eles
09:58
and pretending that our world
could be reduced
207
586960
2496
e fingindo que o mundo
pudesse ser reduzido
10:01
to a couple digits and a horse race,
208
589480
2336
a um par de dígitos
e uma corrida de cavalos,
10:03
while the real stories,
209
591840
1256
enquanto que histórias reais,
as que realmente importam,
10:05
the ones that really mattered,
210
593120
1456
10:06
were somewhere else.
211
594600
1416
estavam em outro lugar.
10:08
What we missed looking at these stories
only through models and algorithms
212
596040
4416
O que não vimos ao olhar nessas histórias
por modelos e algoritmos
10:12
is what I call "data humanism."
213
600480
2520
é o que chamo de "humanismo dos dados".
10:15
In the Renaissance humanism,
214
603560
2016
No humanismo da renascença,
intelectuais europeus trouxeram
10:17
European intellectuals
215
605600
1616
10:19
placed the human nature instead of God
at the center of their view of the world.
216
607240
4920
a natureza humana em vez de Deus
no centro da sua visão do mundo.
10:24
I believe something similar
needs to happen
217
612800
2216
Eu acredito que algo parecido
precisa acontecer
10:27
with the universe of data.
218
615040
1776
com o o universo dos dados.
10:28
Now data are apparently
treated like a God --
219
616840
2976
Agora, dados são tratados como deuses,
10:31
keeper of infallible truth
for our present and our future.
220
619840
3280
guardiões da verdade infalível
do nosso presente e futuro.
10:35
The experiences
that I shared with you today
221
623840
2896
As experiências que eu compartilhei hoje
10:38
taught me that to make data faithfully
representative of our human nature
222
626760
5016
me ensinaram que,
para que os dados representem
nossa natureza humana fielmente
e não nos enganem de novo,
10:43
and to make sure they will not
mislead us anymore,
223
631800
3416
10:47
we need to start designing ways
to include empathy, imperfection
224
635240
3696
precisamos começar a criar formas
de incluir empatia, imperfeição
10:50
and human qualities
225
638960
1576
e qualidades humanas
10:52
in how we collect, process,
analyze and display them.
226
640560
3720
na forma de coletar, processar,
analisar e demonstrar os dados.
10:57
I do see a place where, ultimately,
227
645280
2976
Eu imagino um lugar onde, por fim,
11:00
instead of using data
only to become more efficient,
228
648280
3336
ao invés de usar dados
só para sermos mais eficientes,
11:03
we will all use data
to become more humane.
229
651640
2800
usaremos os dados
para nos tornarmos mais humanos.
11:06
Thank you.
230
654880
1216
Obrigada.
11:08
(Applause)
231
656120
4441
(Aplausos)
Translated by Denise Pelusch
Reviewed by Maricene Crus

▲Back to top

ABOUT THE SPEAKER
Giorgia Lupi - Information designer
Giorgia Lupi sees beauty in data. She challenges the impersonality that data communicate, designing engaging visual narratives that re-connect numbers to what they stand for: stories, people, ideas.

Why you should listen

What sets Giorgia Lupi apart is her humanistic approach to the world of data.

Her work frequently crosses the divide between digital, print and handcrafted representations of information: primarily, she draws with data. She has a passion for and obsession with data, the material she uses to tell stories, and the lens through which she sees the world.

Data are often considered to be very impersonal, boring and clinical, but Lupi's work proves the opposite. She makes sense of data with a curious mind and a heterogeneous arsenal, which ranges from digital technology to exhausting and repetitive manual labor. She believes we will ultimately unlock the full potential of data only when we embrace their nature, and make them part of our lives, which will inevitably make data more human in the process.

Trained as an architect, Lupi has always been driven by opposing forces: analysis and intuition, logic and beauty, numbers and images. True to these dichotomies, in 2011 she started both her own company and studying for a PhD. She earned her ddoctorate in design at Politecnico di Milano, where she focused on information mapping, and she is now the design director and co-founder of Accurat, a global, data-driven research, design and innovation firm with offices in Milan and New York. She relocated from Italy to New York City, where she now lives.

Thanks to her work and research, Giorgia is a prominent voice in the world of data. She has spoken at numerous events, universities and institutions around the world, including the Museum of Modern Art, the Guggenheim Museum, PopTech Conference, Eyeo Festival, Fast Company Innovation by Design, New York University, Columbia University and the New York Public Library. She has been featured in major international outlets such as the New York Times, The Guardian, the Washington Post, NPR, BBC, TIME magazine, National Geographic, Scientific American, Popular Science, Wired, Vogue, Vanity Fair, Monocle and more. Her work has been exhibited at the Design Museum, the Science Museum, and Somerset House in London; the New York Hall of Science and the Storefront for Art and Architecture in New York; at the Triennale Design Museum and the Design Week in Milan, among others.

With her company, Accurat, she has worked with major international clients including IBM, Google, Microsoft, the United Nations, the World Health Organization, the World Economic Forum, the European Union, the Louis Vuitton-Moet-Hennessy Group, Fiat Chrysler Automobiles, J.P. Morgan Asset Management, Unicredit Group and KPMG Advisory.

Giorgia is the co-author of Dear Data, an aspirational hand-drawn data visualization book that explores the more slippery details of daily life through data, revealing the patterns that inform our decisions and affect our relationships.

Her work is part of the permanent collection of the Museum of Modern Art.

More profile about the speaker
Giorgia Lupi | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee