ABOUT THE SPEAKER
Mehdi Ordikhani-Seyedlar - Neuroscientist
Mehdi Ordikhani-Seyedlar is a computational neuroscientist, researching brain signals and their usage in brain-machine interfaces.

Why you should listen

Mehdi Ordikhani-Seyedlar is a research scientist interested in brain-wave patterns generated by neural activities in the brain. Since embarking on his research on neuroscience, Ordikhani-Seyedlar has been working on different brain functions such as learning, memory, pain and, more recently, visual attention in humans. He also conducted a part of his research on monkeys when he was in Dr. Miguel Nicolelis' lab at Duke University. His findings help implement more accurate brain-machine interfaces to treat people who are suffering from attention deficiency.

After receiving his Ph.D  in Biomedical Engineering, Ordikhani-Seyedlar was offered a postdoctoral position by Duke University to develop algorithms to process large-scale neuronal activity and brain-machine interfaces. However, due to political complications in the United States, Ordikhani-Seyedlar -- an Iranian citizen -- changed his plan to continue his brain research outside the US for some time.

As a passionate neuroscientist and neuroengineer, Ordikhani-Seyedlar's aim is to improve brain pattern detectability in computers. This enhances the ability of brain-machine interfaces substantially to better target the defected brain function which in turn enhances the sustainability of treatment effect.

More profile about the speaker
Mehdi Ordikhani-Seyedlar | Speaker | TED.com
TED2017

Mehdi Ordikhani-Seyedlar: What happens in your brain when you pay attention?

梅迪·奧迪哈尼-西野德: 當你集中注意力時,大腦會發生什麽變化?

Filmed:
3,083,456 views

注意力與我們所關注的東西無關,而是與我們的大腦過濾出甚麼有關。計算神經科學家梅迪·奧迪哈尼-西野德,希望透過研究大腦在注意力集中時的圖型,將大腦與電腦整合一起,並透過他建立起的模式,來幫助注意力不足過動症和喪失溝通能力的人。在這場簡短引人入勝的演講中,讓我們來聽聽更多激動人心的科學。
- Neuroscientist
Mehdi Ordikhani-Seyedlar is a computational neuroscientist, researching brain signals and their usage in brain-machine interfaces. Full bio

Double-click the English transcript below to play the video.

00:12
Paying付款 close attention注意 to something:
0
760
2480
專心注意某件事,
00:15
Not that easy簡單, is it?
1
3280
1240
並不簡單,對吧?
00:17
It's because our attention注意 is pulled
in so many許多 different不同 directions方向 at a time,
2
5520
5016
這是因為我們的注意力
同時會被很多不同的東西干擾。
而且如果你還能保持專注,
真的會令人感到佩服。
00:22
and it's in fact事實 pretty漂亮 impressive有聲有色
if you can stay focused重點.
3
10560
4080
00:28
Many許多 people think that attention注意
is all about what we are focusing調焦 on,
4
16360
4056
許多人認為注意力與
我們所專注的東西有關,
而實際上與我們的大腦
過濾出甚麼有關。
00:32
but it's also about what information信息
our brain is trying to filter過濾 out.
5
20440
4800
00:38
There are two ways方法
you direct直接 your attention注意.
6
26320
2720
有兩種方式主導了你的注意力。
00:41
First, there's overt公開 attention注意.
7
29600
1560
首先是外顯注意力。
00:43
In overt公開 attention注意,
you move移動 your eyes眼睛 towards something
8
31640
4136
在外顯注意力中,
你的眼睛會隨著物品移動,
好讓你可以專注於這個物品。
00:47
in order訂購 to pay工資 attention注意 to it.
9
35800
1560
00:50
Then there's covert隱蔽 attention注意.
10
38360
1976
然後就是內隱注意力。
00:52
In covert隱蔽 attention注意,
you pay工資 attention注意 to something,
11
40360
4016
在內隱注意力中,
你無需移動你的眼睛,
就能注意到某樣東西。
00:56
but without moving移動 your eyes眼睛.
12
44400
1560
00:59
Think of driving主動 for a second第二.
13
47040
1640
想像一下你在開車的時候,
01:02
Your overt公開 attention注意,
your direction方向 of the eyes眼睛,
14
50960
3016
你的外顯注意力,
也就是你眼睛的方向
都在前方。
01:06
are in front面前,
15
54000
1656
01:07
but that's your covert隱蔽 attention注意
16
55680
1776
但你的內隱注意力
01:09
which哪一個 is constantly經常 scanning掃描
the surrounding周圍 area,
17
57480
3080
會不斷地掃視周圍環境,
01:13
where you don't actually其實 look at them.
18
61600
1880
而實際上你並不會
刻意去看周圍環境。
01:17
I'm a computational計算 neuroscientist神經學家,
19
65519
1937
我是一名計算神經科學家,
致力於研究認知腦機介面,
01:19
and I work on cognitive認知
brain-machine腦機 interfaces接口,
20
67480
3096
01:22
or bringing使 together一起
the brain and the computer電腦.
21
70600
3040
或者也可以說人腦和電腦結合。
01:26
I love brain patterns模式.
22
74720
1600
我很喜歡看大腦圖型,
01:28
Brain patterns模式 are important重要 for us
23
76720
1696
大腦圖型對於我們來說很重要,
因為有了它們,
我們可以在電腦內建立模型,
01:30
because based基於 on them
we can build建立 models楷模 for the computers電腦,
24
78440
3496
01:33
and based基於 on these models楷模
25
81960
1416
然後基於這些模型,
01:35
computers電腦 can recognize認識
how well our brain functions功能.
26
83400
4216
電腦可以識別出
我們的大腦運作的好不好。
如果大腦不能很好地運作,
01:39
And if it doesn't function功能 well,
27
87640
1600
01:42
then these computers電腦 themselves他們自己
can be used as assistive輔助 devices設備
28
90080
3920
這些電腦就可以成為
治療的輔助裝置。
01:46
for therapies治療.
29
94760
1200
01:48
But that also means手段 something,
30
96480
1640
但這也意味著
01:51
because choosing選擇 the wrong錯誤 patterns模式
31
99360
2496
如果選擇了錯誤的圖型,
我們就會建立出錯誤的模式,
01:53
will give us the wrong錯誤 models楷模
32
101880
1896
01:55
and therefore因此 the wrong錯誤 therapies治療.
33
103800
1656
結果會導致錯誤的治療方法。
對吧?
01:57
Right?
34
105480
1200
01:59
In case案件 of attention注意,
35
107640
1656
關於注意力,
事實上我們不僅可以
02:01
the fact事實 that we can
36
109320
1280
02:03
shift轉移 our attention注意 not only by our eyes眼睛
37
111800
3496
透過眼睛來轉移注意力,
還可以透過思考......
02:07
but also by thinking思維 --
38
115320
1320
02:09
that makes品牌 covert隱蔽 attention注意
an interesting有趣 model模型 for computers電腦.
39
117440
4080
讓內隱注意力
變成電腦裡一個有趣的模式。
02:14
So I wanted to know
what are the brainwave腦波 patterns模式
40
122280
3456
因此我會想知道,
當你在外顯或內隱觀察時,
02:17
when you look overtly陽謀
or when you look covertly隱蔽.
41
125760
3680
腦波圖型會有什麽變化。
02:22
I set up an experiment實驗 for that.
42
130440
1760
我為此建立了一個實驗。
02:24
In this experiment實驗
there are two flickering閃爍 squares廣場,
43
132960
2736
實驗中會有兩個正在閃爍的方塊,
其中一個方塊
閃爍的速度比另一個慢。
02:27
one of them flickering閃爍
at a slower比較慢 rate than the other one.
44
135720
3360
02:32
Depending根據 on which哪一個 of these flickers閃爍
you are paying付款 attention注意 to,
45
140600
3816
看你是專注在哪一個方塊,
你大腦的某個區域
就會同時產生反應,
02:36
certain某些 parts部分 of your brain
will start開始 resonating共鳴 in the same相同 rate
46
144440
3960
反應的頻率就跟閃爍頻率一樣。
02:41
as that flickering閃爍 rate.
47
149200
1440
02:44
So by analyzing分析 your brain signals信號,
48
152000
2936
所以透過分析你的大腦信號,
我們就可以追蹤到
你正在看哪裡
02:46
we can track跟踪 where exactly究竟
you are watching觀看
49
154960
3040
02:50
or you are paying付款 attention注意 to.
50
158760
1560
或者你正在專注哪個地方。
02:55
So to see what happens發生 in your brain
when you pay工資 overt公開 attention注意,
51
163000
4216
所以為了想要看看你在運用
外顯注意力時大腦裡發生的情況,
我會要求實驗者,
直接看著其中一個方塊
02:59
I asked people to look directly
in one of the squares廣場
52
167240
3256
並專注地看。
03:02
and pay工資 attention注意 to it.
53
170520
1280
03:04
In this case案件, not surprisingly出奇,
we saw that these flickering閃爍 squares廣場
54
172760
5296
在實驗中,毫無意外地,
我們看到了這些閃爍的信號
出現在大腦中,
03:10
appeared出現 in their brain signals信號
55
178080
1936
這些信號是從頭部後方發出來的,
03:12
which哪一個 was coming未來
from the back of their head,
56
180040
2360
03:15
which哪一個 is responsible主管 for the processing處理
of your visual視覺 information信息.
57
183560
3400
而這個地方就是負責處理
視覺信息的地方。
03:20
But I was really interested有興趣
58
188280
2336
但我真正有興趣的是:
當你在運用內隱注意力時
大腦裡會發生的情況。
03:22
to see what happens發生 in your brain
when you pay工資 covert隱蔽 attention注意.
59
190640
3160
03:26
So this time I asked people
to look in the middle中間 of the screen屏幕
60
194480
3896
所以這一次,我要求實驗者
看著螢幕的正中間,
而且不能移動眼睛。
03:30
and without moving移動 their eyes眼睛,
61
198400
1880
03:33
to pay工資 attention注意
to either of these squares廣場.
62
201120
2720
這樣就能夠注意到
其中一個方塊。
03:37
When we did that,
63
205120
1616
當我們這樣實驗時,
03:38
we saw that both of these flickering閃爍 rates利率
appeared出現 in their brain signals信號,
64
206760
3936
我們觀察到兩個閃爍方塊的頻率
都出現在他們的大腦信號,
但有趣的是,
03:42
but interestingly有趣,
65
210720
1200
03:44
only one of them,
which哪一個 was paid支付 attention注意 to,
66
212640
3536
被投以關注的其中一個方塊
信號更加強烈,
03:48
had stronger signals信號,
67
216200
1656
03:49
so there was something in the brain
68
217880
2256
因此大腦裡有某樣東西
03:52
which哪一個 was handling處理 this information信息
69
220160
2536
正在負責處理這類的信息。
而這個東西基本上就在
大腦的前額活動區。
03:54
so that thing in the brain was basically基本上
the activation激活 of the frontal前面的 area.
70
222720
6200
04:02
The front面前 part部分 of your brain
is responsible主管
71
230440
2976
大腦的前半部負責
人類較高層次的認知功能。
04:05
for higher更高 cognitive認知 functions功能 as a human人的.
72
233440
2880
04:09
The frontal前面的 part部分,
it seems似乎 that it works作品 as a filter過濾
73
237160
4440
大腦前額區的運作方式
就像過濾器,
04:14
trying to let information信息 come in
only from the right flicker閃爍
74
242640
4376
它會嘗試著把你所專注的方塊信號
發進大腦裡,
04:19
that you are paying付款 attention注意 to
75
247040
1640
04:21
and trying to inhibit抑制 the information信息
coming未來 from the ignored忽視 one.
76
249400
3960
同時也會把忽略的信號給屏蔽掉。
04:27
The filtering濾波 ability能力 of the brain
is indeed確實 a key for attention注意,
77
255400
5296
大腦的過濾能力
就是注意力產生的關鍵,
這種能力在某些人身上是缺乏的,
04:32
which哪一個 is missing失踪 in some people,
78
260720
2776
04:35
for example in people with ADHD多動症.
79
263520
2480
比如說,有注意力不足過動症的人
04:38
So a person with ADHD多動症
cannot不能 inhibit抑制 these distractors分心,
80
266640
5016
因而有注意力不足過動症的人
無法抑制住這些干擾信號,
這就是他們不能
長時間專注於某一任務的原因。
04:43
and that's why they can't focus焦點
for a long time on a single task任務.
81
271680
4760
04:49
But what if this person
82
277600
1536
但如果這個人
可以玩一種特定的電腦遊戲,
04:51
could play a specific具體 computer電腦 game遊戲
83
279160
3536
04:54
with his brain connected連接的 to the computer電腦,
84
282720
2880
讓他的大腦與電腦連接,
04:58
and then train培養 his own擁有 brain
85
286440
2120
然後訓練他自己的大腦
05:01
to inhibit抑制 these distractors分心?
86
289360
2440
去抑制這些干擾信號呢?
05:05
Well, ADHD多動症 is just one example.
87
293680
2480
是的,注意力不足過動症
只是其中一個例子。
05:09
We can use these cognitive認知
brain-machine腦機 interfaces接口
88
297200
3256
我們可以把這些認知腦機介面
運用到其它的認知領域中。
05:12
for many許多 other cognitive認知 fields領域.
89
300480
2200
05:15
It was just a few少數 years年份 ago
90
303760
1776
就在幾年前,
我祖父中風了,
他完全喪失了說話的能力。
05:17
that my grandfather祖父 had a stroke行程,
and he lost丟失 complete完成 ability能力 to speak說話.
91
305560
5720
05:24
He could understand理解 everybody每個人,
but there was no way to respond響應,
92
312640
3336
他能聽見任何人的聲音,
但無法作出回應,
也寫不出來,因為他不識字。
05:28
even not writing寫作
because he was illiterate文盲.
93
316000
2480
05:32
So he passed通過 away in silence安靜.
94
320000
2520
最後他安靜地離開了人世。
05:36
I remember記得 thinking思維 at that time:
95
324800
2336
我記得,當時我正在想:
假如我們有一台電腦
05:39
What if we could have a computer電腦
96
327160
3896
05:43
which哪一個 could speak說話 for him?
97
331080
1360
可以替他講話會是怎樣呢?
05:45
Now, after years年份 that I am in this field領域,
98
333840
2216
幾年後,我投入這個領域
我能預見,這是有可能的。
05:48
I can see that this might威力 be possible可能.
99
336080
2320
05:52
Imagine想像 if we can find brainwave腦波 patterns模式
100
340240
2856
想像一下,如果我們可以
在想像圖片或文字時
05:55
when people think
about images圖片 or even letters,
101
343120
3440
找出腦波圖型,
05:59
like the letter A generates生成
a different不同 brainwave腦波 pattern模式
102
347720
2936
像是字母 A 形成的腦波圖型
與字母 B 的不一樣,諸如此類的。
06:02
than the letter B, and so on.
103
350680
1720
06:04
Could a computer電腦 one day
communicate通信 for people who can't speak說話?
104
352960
3680
那麼,電腦會不會有一天,
就能為那些無法說話的人發聲?
06:09
What if a computer電腦
105
357640
1440
如果電腦
06:11
can help us understand理解
the thoughts思念 of a person in a coma昏迷?
106
359960
4560
能幫助我們了解處於昏迷狀態中的
人的想法又會是怎樣呢?
06:17
We are not there yet然而,
107
365840
1616
我們還沒有實現那樣的願景,
06:19
but pay工資 close attention注意.
108
367480
2736
但我們會極度關注。
我們很快就能將其實現。
06:22
We will be there soon不久.
109
370240
1696
06:23
Thank you.
110
371960
1496
謝謝。
(掌聲)
06:25
(Applause掌聲)
111
373480
5632
Translated by Yi-Fan Yu
Reviewed by Yanyan Hong

▲Back to top

ABOUT THE SPEAKER
Mehdi Ordikhani-Seyedlar - Neuroscientist
Mehdi Ordikhani-Seyedlar is a computational neuroscientist, researching brain signals and their usage in brain-machine interfaces.

Why you should listen

Mehdi Ordikhani-Seyedlar is a research scientist interested in brain-wave patterns generated by neural activities in the brain. Since embarking on his research on neuroscience, Ordikhani-Seyedlar has been working on different brain functions such as learning, memory, pain and, more recently, visual attention in humans. He also conducted a part of his research on monkeys when he was in Dr. Miguel Nicolelis' lab at Duke University. His findings help implement more accurate brain-machine interfaces to treat people who are suffering from attention deficiency.

After receiving his Ph.D  in Biomedical Engineering, Ordikhani-Seyedlar was offered a postdoctoral position by Duke University to develop algorithms to process large-scale neuronal activity and brain-machine interfaces. However, due to political complications in the United States, Ordikhani-Seyedlar -- an Iranian citizen -- changed his plan to continue his brain research outside the US for some time.

As a passionate neuroscientist and neuroengineer, Ordikhani-Seyedlar's aim is to improve brain pattern detectability in computers. This enhances the ability of brain-machine interfaces substantially to better target the defected brain function which in turn enhances the sustainability of treatment effect.

More profile about the speaker
Mehdi Ordikhani-Seyedlar | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee