ABOUT THE SPEAKER
Mehdi Ordikhani-Seyedlar - Neuroscientist
Mehdi Ordikhani-Seyedlar is a computational neuroscientist, researching brain signals and their usage in brain-machine interfaces.

Why you should listen

Mehdi Ordikhani-Seyedlar is a research scientist interested in brain-wave patterns generated by neural activities in the brain. Since embarking on his research on neuroscience, Ordikhani-Seyedlar has been working on different brain functions such as learning, memory, pain and, more recently, visual attention in humans. He also conducted a part of his research on monkeys when he was in Dr. Miguel Nicolelis' lab at Duke University. His findings help implement more accurate brain-machine interfaces to treat people who are suffering from attention deficiency.

After receiving his Ph.D  in Biomedical Engineering, Ordikhani-Seyedlar was offered a postdoctoral position by Duke University to develop algorithms to process large-scale neuronal activity and brain-machine interfaces. However, due to political complications in the United States, Ordikhani-Seyedlar -- an Iranian citizen -- changed his plan to continue his brain research outside the US for some time.

As a passionate neuroscientist and neuroengineer, Ordikhani-Seyedlar's aim is to improve brain pattern detectability in computers. This enhances the ability of brain-machine interfaces substantially to better target the defected brain function which in turn enhances the sustainability of treatment effect.

More profile about the speaker
Mehdi Ordikhani-Seyedlar | Speaker | TED.com
TED2017

Mehdi Ordikhani-Seyedlar: What happens in your brain when you pay attention?

Mehdi Ordikhani-Seyedlar: Que ocorre no cerebro cando pos atención?

Filmed:
3,083,456 views

A atención non está só relacionada coas cousas en que nos concentramos senón tamén co que o cerebro filtra. Investigando os padróns cerebrais que ocorren mentres as persoas intentan concentrarse, o neurocientífico computacional Mehdi Ordikhani-Seyedlar agarda achegar aínda máis o cerebro aos ordenadores e construír modelos que poidan utilizarse para tratar o TDAH (trastorno por déficit de atención e hiperactividade) e axudar a quen perdeu a capacidade de comunicarse. Escoita máis sobre esta emocionante ciencia nesta charla breve e fascinante.
- Neuroscientist
Mehdi Ordikhani-Seyedlar is a computational neuroscientist, researching brain signals and their usage in brain-machine interfaces. Full bio

Double-click the English transcript below to play the video.

00:12
Paying close attention to something:
0
760
2480
Poñede moita atención en algo:
00:15
Not that easy, is it?
1
3280
1240
Non é fácil, non?
00:17
It's because our attention is pulled
in so many different directions at a time,
2
5520
5016
É porque a nosa atención vai
cara a distintas direccións ao mesmo tempo
00:22
and it's in fact pretty impressive
if you can stay focused.
3
10560
4080
e, de feito, é bastante impresionante
se conseguides centrarvos en algo.
00:28
Many people think that attention
is all about what we are focusing on,
4
16360
4056
Moita xente cre que a atención trata
daquilo no que tratamos de concentrarnos,
00:32
but it's also about what information
our brain is trying to filter out.
5
20440
4800
pero tamén trata da información
que o cerebro tenta filtrar.
00:38
There are two ways
you direct your attention.
6
26320
2720
Hai dous xeitos de centrar a atención.
00:41
First, there's overt attention.
7
29600
1560
Primeiro, coa atención directa.
00:43
In overt attention,
you move your eyes towards something
8
31640
4136
Na atención directa,
movedes os ollos cara a algo
00:47
in order to pay attention to it.
9
35800
1560
para poñer atención.
00:50
Then there's covert attention.
10
38360
1976
Tamén está a atención indirecta.
00:52
In covert attention,
you pay attention to something,
11
40360
4016
Na atención indirecta,
poñedes a atención en algo
00:56
but without moving your eyes.
12
44400
1560
mais sen mover os ollos.
00:59
Think of driving for a second.
13
47040
1640
Pensade un segundo en conducir.
01:02
Your overt attention,
your direction of the eyes,
14
50960
3016
A vosa atención directa,
a dirección dos ollos,
01:06
are in front,
15
54000
1656
está en fronte,
01:07
but that's your covert attention
16
55680
1776
pero a vosa atención indirecta
01:09
which is constantly scanning
the surrounding area,
17
57480
3080
está constantemente buscando ao redor,
01:13
where you don't actually look at them.
18
61600
1880
a onde, de feito, non mirades.
01:17
I'm a computational neuroscientist,
19
65519
1937
Son neurocientífico computacional,
01:19
and I work on cognitive
brain-machine interfaces,
20
67480
3096
e traballo con interfaces cognitivas
cerebro-máquina,
01:22
or bringing together
the brain and the computer.
21
70600
3040
é dicir, xuntando o cerebro e o ordenador.
01:26
I love brain patterns.
22
74720
1600
Encántanme os padróns cerebrais.
Os padróns cerebrais son importantes
01:28
Brain patterns are important for us
23
76720
1696
01:30
because based on them
we can build models for the computers,
24
78440
3496
porque baseándonos neles construímos
modelos para ordenadores,
01:33
and based on these models
25
81960
1416
e baseándonos neses modelos
01:35
computers can recognize
how well our brain functions.
26
83400
4216
os ordenadores poden recoñecer
como funciona o cerebro.
01:39
And if it doesn't function well,
27
87640
1600
E se non funciona ben,
01:42
then these computers themselves
can be used as assistive devices
28
90080
3920
eses ordenadores pódense usar
como dispositivos de asistencia
01:46
for therapies.
29
94760
1200
para terapias.
01:48
But that also means something,
30
96480
1640
Mais tamén implica algo,
01:51
because choosing the wrong patterns
31
99360
2496
porque elixir os padróns errados
01:53
will give us the wrong models
32
101880
1896
dános modelos errados
01:55
and therefore the wrong therapies.
33
103800
1656
e, por tanto, terapias erradas.
01:57
Right?
34
105480
1200
Non?
01:59
In case of attention,
35
107640
1656
No caso da atención,
02:01
the fact that we can
36
109320
1280
o feito de podermos
02:03
shift our attention not only by our eyes
37
111800
3496
cambiar a nosa atención
non só cos nosos ollos
02:07
but also by thinking --
38
115320
1320
senón tamén co pensamento
02:09
that makes covert attention
an interesting model for computers.
39
117440
4080
fai da atención indirecta
un modelo interesante para ordenadores.
02:14
So I wanted to know
what are the brainwave patterns
40
122280
3456
Así que eu quería saber
cales son os padróns cerebrais
02:17
when you look overtly
or when you look covertly.
41
125760
3680
ao mirar directamente
ou ao mirar indirectamente.
02:22
I set up an experiment for that.
42
130440
1760
Deseñei un experimento.
02:24
In this experiment
there are two flickering squares,
43
132960
2736
Nel, hai dous cadrados que chiscan,
02:27
one of them flickering
at a slower rate than the other one.
44
135720
3360
un deles chisca máis devagar có outro.
02:32
Depending on which of these flickers
you are paying attention to,
45
140600
3816
Dependendo de en que cadrado
poñades a atención,
02:36
certain parts of your brain
will start resonating in the same rate
46
144440
3960
certas partes do cerebro
resoarán ao mesmo ritmo
02:41
as that flickering rate.
47
149200
1440
do cadrado.
02:44
So by analyzing your brain signals,
48
152000
2936
Así, ao analizar os sinais do cerebro,
02:46
we can track where exactly
you are watching
49
154960
3040
podemos rastrexar exactamente
onde estades mirando
02:50
or you are paying attention to.
50
158760
1560
ou poñendo a atención.
02:55
So to see what happens in your brain
when you pay overt attention,
51
163000
4216
Para ver que ocorre no cerebro
cando se pon atención directa,
02:59
I asked people to look directly
in one of the squares
52
167240
3256
pedinlles a unhas persoas que mirasen
directamente un dos cadrados
03:02
and pay attention to it.
53
170520
1280
e se concentrasen nel.
03:04
In this case, not surprisingly,
we saw that these flickering squares
54
172760
5296
Neste caso, prediciblemente,
vimos que os cadrados que chiscaban
03:10
appeared in their brain signals
55
178080
1936
aparecían nos sinais cerebrais
03:12
which was coming
from the back of their head,
56
180040
2360
que viñan da parte de atrás da cabeza,
03:15
which is responsible for the processing
of your visual information.
57
183560
3400
que é a responsable
de procesar a información visual.
03:20
But I was really interested
58
188280
2336
Pero interesoume moito
03:22
to see what happens in your brain
when you pay covert attention.
59
190640
3160
ver o que ocorre no cerebro
ao poñer atención indirecta.
03:26
So this time I asked people
to look in the middle of the screen
60
194480
3896
Desta vez, pedinlle á xente que mirase
para o centro da pantalla,
03:30
and without moving their eyes,
61
198400
1880
e sen mover os ollos,
03:33
to pay attention
to either of these squares.
62
201120
2720
que se concentrase en
calquera deses cadrados.
03:37
When we did that,
63
205120
1616
Cando o fixemos
03:38
we saw that both of these flickering rates
appeared in their brain signals,
64
206760
3936
vimos que ambos os cadrados
aparecían nos sinais cerebrais
03:42
but interestingly,
65
210720
1200
mais, curiosamente,
03:44
only one of them,
which was paid attention to,
66
212640
3536
un deles, ao que se lle poñía atención,
03:48
had stronger signals,
67
216200
1656
tiña sinais máis fortes,
03:49
so there was something in the brain
68
217880
2256
así que había algo no cerebro
03:52
which was handling this information
69
220160
2536
que manexaba esa información
03:54
so that thing in the brain was basically
the activation of the frontal area.
70
222720
6200
e ese algo era basicamente
a activación da área frontal.
04:02
The front part of your brain
is responsible
71
230440
2976
A parte frontal do cerebro é a responsable
04:05
for higher cognitive functions as a human.
72
233440
2880
das funcións cognitivas superiores
que temos como humanos.
04:09
The frontal part,
it seems that it works as a filter
73
237160
4440
A parte frontal parece
que traballa como un filtro
04:14
trying to let information come in
only from the right flicker
74
242640
4376
que intenta que a información entre
só desde o cadrado
04:19
that you are paying attention to
75
247040
1640
en que nos concentramos
04:21
and trying to inhibit the information
coming from the ignored one.
76
249400
3960
e intenta inhibir a información
que vén do cadrado que ignoramos.
04:27
The filtering ability of the brain
is indeed a key for attention,
77
255400
5296
A habilidade de filtrar do cerebro
é unha chave para a atención,
04:32
which is missing in some people,
78
260720
2776
que non teñen algunhas persoas,
04:35
for example in people with ADHD.
79
263520
2480
por exemplo as que teñen TDAH.
04:38
So a person with ADHD
cannot inhibit these distractors,
80
266640
5016
Unha persoa con TDAH non
pode inhibir eses distractores,
04:43
and that's why they can't focus
for a long time on a single task.
81
271680
4760
e esa é a razón pola que non se pode
concentrar nunha tarefa moito tempo.
04:49
But what if this person
82
277600
1536
Pero que ocorrería se esa persoa
04:51
could play a specific computer game
83
279160
3536
puidese xogar a un videoxogo específico
04:54
with his brain connected to the computer,
84
282720
2880
co cerebro conectado ao ordenador
04:58
and then train his own brain
85
286440
2120
e adestrar o seu propio cerebro
05:01
to inhibit these distractors?
86
289360
2440
para inhibir eses distractores?
05:05
Well, ADHD is just one example.
87
293680
2480
Ben, o TDAH é só un exemplo.
05:09
We can use these cognitive
brain-machine interfaces
88
297200
3256
Podemos usar esas interfaces
cognitivas máquina-cerebro
05:12
for many other cognitive fields.
89
300480
2200
para outros campos cognitivos.
05:15
It was just a few years ago
90
303760
1776
Hai algúns anos,
05:17
that my grandfather had a stroke,
and he lost complete ability to speak.
91
305560
5720
o meu avó tivo un derramo
e perdeu a capacidade de falar.
05:24
He could understand everybody,
but there was no way to respond,
92
312640
3336
Podía entender todo,
pero non podía responder,
05:28
even not writing
because he was illiterate.
93
316000
2480
nin por escrito, porque era analfabeto.
05:32
So he passed away in silence.
94
320000
2520
Así que morreu en silencio.
05:36
I remember thinking at that time:
95
324800
2336
Lémbrome de pensar daquela:
05:39
What if we could have a computer
96
327160
3896
E se tivésemos un ordenador
05:43
which could speak for him?
97
331080
1360
que puidese falar por el?
05:45
Now, after years that I am in this field,
98
333840
2216
Agora, despois de anos neste campo,
05:48
I can see that this might be possible.
99
336080
2320
vexo que iso podería ser posible.
05:52
Imagine if we can find brainwave patterns
100
340240
2856
Imaxinade que podemos atopar
padróns cerebrais
05:55
when people think
about images or even letters,
101
343120
3440
cando a xente pensa en imaxes
ou mesmo en letras,
05:59
like the letter A generates
a different brainwave pattern
102
347720
2936
como que a letra A xere
un padrón cerebral diferente
06:02
than the letter B, and so on.
103
350680
1720
da letra B, e así.
06:04
Could a computer one day
communicate for people who can't speak?
104
352960
3680
Podería un día un ordenador comunicar
pola xente que non pode falar?
06:09
What if a computer
105
357640
1440
E se un ordenador
06:11
can help us understand
the thoughts of a person in a coma?
106
359960
4560
pode axudarnos a entender
os pensamentos dunha persoa en coma?
06:17
We are not there yet,
107
365840
1616
Aínda non chegamos aí
06:19
but pay close attention.
108
367480
2736
pero poñede atención.
06:22
We will be there soon.
109
370240
1696
Estaremos aí ben axiña.
06:23
Thank you.
110
371960
1496
Grazas.
06:25
(Applause)
111
373480
5632
(Aplausos)
Translated by Carme Paz
Reviewed by Mario Cal

▲Back to top

ABOUT THE SPEAKER
Mehdi Ordikhani-Seyedlar - Neuroscientist
Mehdi Ordikhani-Seyedlar is a computational neuroscientist, researching brain signals and their usage in brain-machine interfaces.

Why you should listen

Mehdi Ordikhani-Seyedlar is a research scientist interested in brain-wave patterns generated by neural activities in the brain. Since embarking on his research on neuroscience, Ordikhani-Seyedlar has been working on different brain functions such as learning, memory, pain and, more recently, visual attention in humans. He also conducted a part of his research on monkeys when he was in Dr. Miguel Nicolelis' lab at Duke University. His findings help implement more accurate brain-machine interfaces to treat people who are suffering from attention deficiency.

After receiving his Ph.D  in Biomedical Engineering, Ordikhani-Seyedlar was offered a postdoctoral position by Duke University to develop algorithms to process large-scale neuronal activity and brain-machine interfaces. However, due to political complications in the United States, Ordikhani-Seyedlar -- an Iranian citizen -- changed his plan to continue his brain research outside the US for some time.

As a passionate neuroscientist and neuroengineer, Ordikhani-Seyedlar's aim is to improve brain pattern detectability in computers. This enhances the ability of brain-machine interfaces substantially to better target the defected brain function which in turn enhances the sustainability of treatment effect.

More profile about the speaker
Mehdi Ordikhani-Seyedlar | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee