ABOUT THE SPEAKER
Lalitesh Katragadda - Engineer
Lalitesh Katragadda builds tools that help groups of people compile information to build something greater than the sum of its parts. His latest fascination: collaborative maps.

Why you should listen

Lalitesh Katragadda is a software engineer at Google, working on geo-data, machine vision, machine learning and space robotics. Before joining Google, Lalitesh founded a robotics startup that was acquired by Google. At Google, Lalitesh co-founded Google India and was its founding Joint Center Head for two years. He co-started several projects including Google Finance and Hindi Transliteration, and is now working on maps.

More profile about the speaker
Lalitesh Katragadda | Speaker | TED.com
TEDIndia 2009

Lalitesh Katragadda: Making maps to fight disaster, build economies

ललितेश कात्रगड्डा: नकाशांची निर्मिती संकटांचा सामना करण्यासाठी, अर्थव्यवस्था उभारण्यासाठी

Filmed:
405,132 views

२००५ पर्यंत फक्त १५ टक्के जग नकाशावर आलं होतं. यामुळं एखाद्या आपत्तीच्या वेळी मदत पोचण्यास विलंब होतो - आणि वापरात नसलेल्या जमिनीची व अपरिचित रस्त्यांची आर्थिक ताकद झाकली जाते. ह्या छोट्याशा बातचितीमध्ये 'गुगल'चे ललितेश कात्रगड्डा दाखवतायत 'मॅप मेकर', एक एकत्रित नकाशा-निर्मिती साधन जे जगभरातल्या लोकांकडून वापरलं जातंय, आपलं जग नकाशावर आणण्यासाठी.
- Engineer
Lalitesh Katragadda builds tools that help groups of people compile information to build something greater than the sum of its parts. His latest fascination: collaborative maps. Full bio

Double-click the English transcript below to play the video.

00:16
In 2008, Cyclone Nargis devastated Myanmar.
0
1000
5000
२००८ च्या नर्गिस चक्रीवादळानं म्यानमारची वाट लावली.
00:21
Millions of people were in severe need of help.
1
6000
4000
लाखो लोकांना मदतीची नितांत गरज होती.
00:25
The U.N. wanted to rush people and supplies to the area.
2
10000
4000
यु.एन.ला त्या भागात तातडीनं माणसं नि सामग्री पोचवायची होती.
00:29
But there were no maps, no maps of roads,
3
14000
3000
पण त्यांच्याकडं नकाशेच नव्हते, ना रस्त्यांचे नकाशे,
00:32
no maps showing hospitals, no way for help to reach the cyclone victims.
4
17000
5000
ना हॉस्पिटल्सचा पत्ता, वादळग्रस्तांपर्यंत मदत पोचवण्याचा कुठलाच मार्ग नव्हता.
00:37
When we look at a map of Los Angeles or London,
5
22000
3000
लॉस अँजिलिस किंवा लंडनचा नकाशा बघितल्यावर,
00:40
it is hard to believe
6
25000
3000
विश्वास बसणार नाही
00:43
that as of 2005, only 15 percent of the world
7
28000
3000
की २००५ पर्यंत फक्त १५ टक्के जग
00:46
was mapped to a geo-codable level of detail.
8
31000
3000
नकाशावर आलं होतं, जिओ-कोडेबल तपशील पातळीपर्यंत.
00:49
The U.N. ran headfirst into a problem
9
34000
3000
सर्वप्रथम यु.एन.ला समस्येची झळ पोचली
00:52
that the majority of the world's populous faces:
10
37000
2000
की जगातल्या घनदाट लोकवस्तींपैकी बहुतेकांचे
00:54
not having detailed maps.
11
39000
2000
विस्तृत नकाशेच नव्हते.
00:56
But help was coming.
12
41000
2000
पण मदतकार्य सुरु होतं.
00:58
At Google, 40 volunteers
13
43000
2000
'गुगल' मध्ये ४० स्वयंसेवक
01:00
used a new software
14
45000
3000
एक नवं सॉफ्टवेअर वापरत होते
01:03
to map 120,000 kilometers of roads,
15
48000
3000
नकाशा बनवण्यासाठी, १,२०,००० किमीच्या रस्त्यांचा
01:06
3,000 hospitals, logistics and relief points.
16
51000
3000
३००० हॉस्पिटल्स, प्रवासी साधनं आणि मदत केंद्रांचा.
01:09
And it took them four days.
17
54000
2000
आणि यासाठी त्यांना चार दिवस लागले.
01:11
The new software they used? Google Mapmaker.
18
56000
3000
कुठलं नवं सॉफ्टवेअर त्यांनी वापरलं? 'गुगल मॅपमेकर'
01:14
Google Mapmaker is a technology that empowers each of us
19
59000
3000
'गुगल मॅपमेकर' एक असं तंत्रज्ञान आहे ज्यामुळं
01:17
to map what we know locally.
20
62000
3000
आपल्याला स्थानिक नकाशे बनवता येतात.
01:20
People have used this software
21
65000
2000
लोकांनी हे सॉफ्टवेअर वापरुन
01:22
to map everything from roads to rivers,
22
67000
2000
नकाशावर काय नाही टाकलं - रस्त्यांपासून नद्यांपर्यंत,
01:24
from schools to local businesses,
23
69000
3000
शाळांपासून स्थानिक उद्योगांपर्यंत
01:27
and video stores to the corner store.
24
72000
3000
आणि व्हिडीओ स्टोअरपासून कोपर्‍यावरच्या दुकानापर्यंत.
01:30
Maps matter.
25
75000
2000
नकाशे महत्त्वाचे आहेत.
01:32
Nobel Prize nominee Hernando De Soto
26
77000
2000
नोबेल प्राइझचे नॉमिनी, हर्नान्डो डी सोटो
01:34
recognized that the key to economic liftoff
27
79000
2000
यांनी ओळखलेली आर्थिक विकासाची किल्ली
01:36
for most developing countries
28
81000
2000
बहुतांश विकसनशील देशांसाठी
01:38
is to tap the vast amounts of uncapitalized land.
29
83000
3000
म्हणजे वापरात आणणं भरपूर पडीक जमीन.
01:41
For example, a trillion dollars
30
86000
3000
उदाहरणार्थ, करोडो डॉलर्स किमतीचा
01:44
of real estate remains uncapitalized in India alone.
31
89000
3000
जमिन-जुमला एकट्या भारतातच पडून आहे.
01:47
In the last year alone,
32
92000
2000
गेल्या एका वर्षातच,
01:49
thousands of users in 170 countries
33
94000
4000
१७० देशांतल्या हजारो युजर्सनी
01:53
have mapped millions of pieces of information,
34
98000
3000
नकाशावर टाकल्या लक्षावधी उपयुक्त गोष्टी,
01:56
and created a map of a level of detail never thought viable.
35
101000
3000
आणि अशक्यप्राय तपशीलांनी भरलेला नकाशा निर्माण केला.
01:59
And this was made possible by
36
104000
2000
आणि हे शक्य झालं
02:01
the power of passionate users everywhere.
37
106000
4000
सगळीकडच्या पछाडलेल्या युजर्सच्या प्रयत्‍नांमुळं.
02:05
Let's look at some of the maps
38
110000
3000
काही नकाशांवर नजर टाकू
02:08
being created by users right now.
39
113000
3000
ज्यावर युजर्स सध्या काम करतायत.
02:11
So, as we speak, people are mapping the world
40
116000
2000
तर, आपण यावर बोलत असताना, लोक जगाचा नकाशा बनवतायत
02:13
in these 170 countries.
41
118000
2000
या १७० देशांमध्ये.
02:15
You can see Bridget in Africa who just mapped a road in Senegal.
42
120000
6000
तुम्हाला दिसेल नुकताच सेनेगलमधला रस्ता नकाशावर टाकताना आफ्रिकेतील ब्रिजेट.
02:21
And, closer to home, Chalua, an N.G. road in Bangalore.
43
126000
5000
आणि, आपल्या जवळच, चालुआ, बेंगलोरातला एम. जी. रोड टाकताना.
02:26
This is the result of computational geometry,
44
131000
3000
हे फळ आहे, कॉम्प्युटेशनल जॉमेट्री,
02:29
gesture recognition, and machine learning.
45
134000
3000
गेश्चर रेकग्निशन, आणि मशिन लर्निंगचं.
02:32
This is a victory of thousands of users,
46
137000
2000
हा विजय आहे हजारो युजर्सचा,
02:34
in hundreds of cities,
47
139000
2000
शेकडो शहरांमधून,
02:36
one user, one edit at a time.
48
141000
2000
एकेका युजरच्या एक-एक एडीटचा.
02:38
This is an invitation to the 70 percent
49
143000
4000
हे निमंत्रण आहे ७० टक्के
02:42
of our unmapped planet.
50
147000
2000
आपल्या नकाशारहित भूभागाचं.
02:44
Welcome to the new world.
51
149000
2000
या नव्या जगात स्वागत असो.
02:46
(Applause)
52
151000
3000
(टाळ्या)
Translated by Aditya Kulkarni
Reviewed by Mandar Shinde

▲Back to top

ABOUT THE SPEAKER
Lalitesh Katragadda - Engineer
Lalitesh Katragadda builds tools that help groups of people compile information to build something greater than the sum of its parts. His latest fascination: collaborative maps.

Why you should listen

Lalitesh Katragadda is a software engineer at Google, working on geo-data, machine vision, machine learning and space robotics. Before joining Google, Lalitesh founded a robotics startup that was acquired by Google. At Google, Lalitesh co-founded Google India and was its founding Joint Center Head for two years. He co-started several projects including Google Finance and Hindi Transliteration, and is now working on maps.

More profile about the speaker
Lalitesh Katragadda | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee