Chris Urmson: How a driverless car sees the road
Kris Urmson (Chris Urmson): Kako samoupravljajući automobil vidi svet
Double-click the English transcript below to play the video.
invented the automobile.
izumeo je automobil.
for the first public test drive,
izveo ga je na prvu javnu test vožnju
crashed into a wall.
udario ga u zid.
reliable part of the car, the driver.
delu automobila - vozaču.
we've added air bags,
vazdušne jastuke,
started trying to make the car smarter
počeli smo čak i da činimo auto pametnijim
a little bit about the difference
with driver assistance systems
sistema asistencije vozaču
self-driving cars
samoupravljajućih automobila
a little bit about our car
i o našem automobilu
and how it reacts and what it does,
kako reaguje i šta radi,
a little bit about the problem.
nešto i o jednom problemu.
on the world's roads every year.
1,2 miliona ljudi pogine.
are killed each year.
pogine 33 000 ljudi.
falling out of the sky every working day.
737 sruši iz vazduha.
prodaju na ovakav način
ovo predstavlja vožnju, zar ne?
other than drive.
bilo šta drugo, osim vožnje.
između 1990. i 2010,
increased by 38 percent.
than it was not very long ago.
pogoršao u skorije vreme.
in America, which is about 50 minutes,
u Americi, koje iznosi oko 50 minuta
workers we have,
radnika koje imamo,
about six billion minutes
so let's put it in perspective.
to na sledeći način:
life expectancy of a person,
životnim vekom jedne osobe
who don't have the privilege
koji nemaju tu privilegiju
drive to work in the morning,
tridesetominutne jutarnje vožnje do posla,
of piecing together bits of public transit
spajajući delove javnog prevoza
i porodice za prevoz.
that you and I have to get around.
koju vi i ja imamo.
po tom pitanju.
these driver assistance systems
sisteme asistencije vozača,
and incrementally improve them,
i da će se oni vremenom
into self-driving cars.
that's like me saying
kada bih vam ja sada rekao da
one day I'll be able to fly.
da bih jednog dana mogao i da poletim.
something a little different.
uradimo nešto drugačije.
about three different ways
than driver assistance systems.
i sistema asistencije vozaču.
with some of our own experience.
of a self-driving car
samoupravljajućih automobila
they were 100 Googlers,
to je bilo 100 Guglovih radnika
them to use it in their daily lives.
da ga koriste u svakodnevnom životu.
this one had a big asterisk with it:
samoupravljajuće automobile
but it could still fail.
ali je i dalje moglo da se pokvari.
we let them use it,
dali im da ga koriste,
was something awesome,
je bilo fenomenalno
to bring a product into the world.
da uvede proizvod u svet.
who came in and told us on the first day,
koji nam je prvog dana rekao:
What are we thinking?"
O čemu uopšte razmišljamo?"
"Not only should I have it,
"Ne samo da je meni potreban,
because people are terrible drivers."
jer su ljudi očajni vozači."
the people inside the car were doing,
šta ljudi unutar automobila rade
and realizes the battery is low,
i shvati da mu se baterija istrošila.
and digs around in his backpack,
čeprkao po svom rancu,
the charging cable for his phone,
za punjenje za svoj telefon,
puts it on the phone.
i u telefon.
65 miles per hour down the freeway.
brzinom od 100 km na sat, po autoputu.
it's kind of obvious, right?
i rekli smo da je to nekako očigledno.
the driver is going to get.
incrementally smarter,
automobil postepeno postaje pametan
the wins we really need.
pobede koje smo nekada želeli.
a little technical for a moment here.
tehničkim jezikom, na trenutak.
and along the bottom
na dnu primećujemo
apply the brakes when it shouldn't.
primenjuje kočnice kada ne bi trebalo.
and the car starts stopping randomly,
i automobil iz nekog razloga stane,
the car is going to apply the brakes
koliko često će auto primeniti kočnice,
to help you avoid an accident.
da bi vam pomogao da izbegnete nesreću.
the bottom left corner here,
u ovaj donji levi ugao
it doesn't do anything goofy,
ne radi ništa šašavo
out of an accident.
a driver assistance system into a car,
sistem asistencije vozaču
za ublažavanje sudara
of technology on there,
to have some operating properties,
neka upravljačka svojstva
all of the accidents,
along the curve here,
that the human driver misses,
koja ljudima vozačima promakne
by a factor of two.
na našim putevima.
dying every year in America.
pogine u Americi svake godine.
samoupravljajući automobil,
that looks like this.
koja izgleda ovako.
more sensors in the vehicle,
više senzora u vozilo
operating point up here
gets into a crash.
ali sa vrlo malom učestalošću.
and we could argue
i da polemišemo o tome
I could say something like "80-20 rule,"
i ja bih rekao da je to "pravilo 80-20"
to that new curve.
da se podigne na tu novu krivu.
from a different direction for a moment.
da to sagledamo iz drugačijeg ugla.
the technology has to do the right thing.
tehnologija postupi na ispravan način.
is a driver assistance system.
sistem asistencije vozaču.
to traffic accidents
do saobraćajnih nesreća
is probably making decisions
verovatno donosi odluke
between these two,
između ove dve veličine,
koliko brzo ja trčim
I'm never actually going to get there.
zapravo, nikada neću moći to da stignem.
the system can handle uncertainty.
kako sistem podnosi nesigurnosti.
stepping into the road, might not be.
možda iskorači na put, a možda i ne.
nor can any of our algorithms,
niti bilo koji naš algoritam
a driver assistance system,
because again,
opet iz razloga što
that's completely unacceptable.
to je potpuno neprihvatljivo.
can look at that pedestrian and say,
može da prepozna pešaka i kaže
and then react appropriately after that.
i nakon toga reaguj adekvatno."
a driver assistance system can ever be.
sistem asistencije vozaču ikad biti.
the differences between the two.
između ova dva sistema.
how the car sees the world.
kako automobil vidi svet.
where it is in the world,
gde se nalazi, na svetu,
and aligning the two,
sa mape i senzora i upoređuje ih
what it sees in the moment.
u konkretnom trenutku.
are other vehicles on the road,
predstavljaju druga vozila na putu.
over there is a cyclist,
su biciklisti,
if you look really closely,
is in the moment,
u datom trenutku
we have to predict what's going to happen.
moramo da predvidimo šta će se desiti.
is about to make a left lane change
će da izvrši prestrojavanje u levu traku
what everybody's thinking,
i o čemu svi ostali misle
vrlo komplikovan problem.
how the car should respond in the moment,
kako bi auto trebalo da reaguje u trenutku
brzo bi trebalo da uspori ili ubrza.
quickly it should slow down or speed up.
just following a path:
pressing the brake or gas.
pritiskanje kočnice ili gasa.
at the end of the day.
na dva broja, zapravo.
and the other boxes on the road,
i ostale kocke na putu
and roughly where the other vehicles are.
i gde se otprilike nalaze i ostala vozila.
understanding of the world.
razumevanje sveta.
on neighborhood and city streets,
po komšiluku i gradskim ulicama,
new level of difficulty.
na potpuno novom nivou.
of us, cars crossing in front of us,
automobile koji prelaze ispred nas
problem by comparison.
problem u odnosu na prethodni.
that problem solved,
to deal with construction.
sa radovima na putu.
forcing it to drive to the right,
koji ga primoravaju da ide na desnu
in isolation, of course.
through that construction zone as well.
koji se kreću oko tih radova, takođe.
breaking the rules, the police are there
policija je tu
that flashing light on the top of the car
rotaciono svetlo na krovu auta
it's actually a police officer.
nego policijac.
on the side here,
differently as well.
drugačije da se pozabavimo.
other people have expectations:
drugi ljudi imaju očekivanja.
to yield to them and make room for them
da mu da prednost i napravi mesta za njega
stood in the road,
that this means stop,
da to znači da stanemo,
we should continue.
da mi nastavimo dalje.
is by sharing data between the vehicles.
jeste deljenjem podataka između vozila.
sees a construction zone,
so it can be in the correct lane
da bi moglo da bude u pravilnoj traci
deeper understanding of this.
that the cars have seen over time,
koje auto prima u toku vremena
of pedestrians, cyclists,
what other vehicles should look like
kako bi druga vozila
we could take from that a model
iz toga bismo mogli da izvučemo model
to move through the world.
crossing in front of us.
koji prelazi ispred nas.
and we anticipate
i predviđamo
and around the car to the right.
coming down the road
to drive down the shape of the road.
da vozi po obliku puta.
going to make a U-turn in front of us,
ko će da napravi polukružno ispred nas
and respond safely.
i da reagujemo bezbedno.
for things that we've seen,
za ove stvari koje smo videli.
lots of things that you haven't
through Mountain View,
kroz Mauntin Vju
(Laughter)
(Smeh)
in the DMV handbook
o ponašanju u saobraćaju
to encounter that,
to da prepoznaju,
with just ducks.
The car reacts to that.
anywhere other than Mountain View.
nigde drugde osim u Mauntin Vjuu.
to deal with drivers,
jumps out of this truck at us.
iskače iz ovog kamiona ispred nas.
with the green box decides
sa zelenom kutijom koji je odlučio
at the last possible moment.
u poslednjem mogućem trenutku.
the car to our left decides
auto sa naše leve strane
blow through a red light
koji jurca kroz crveno svetlo
blowing through that light as well.
isto jurca kroz crveno svetlo.
the vehicle responds safely.
who do I don't know what
ne-znam-ni-ja-šta na putu
pulling out between two self-driving cars.
između dva samoupravljajuće automobila.
"O čemu ti razmišljaš?"
with a lot of stuff there,
down pretty quickly.
analizirati jednu od njih.
with the cyclist again,
opet sa biciklistom,
we can't actually see the cyclist yet,
ne možemo da ga vidimo
blue box up there,
mala plava kocka tamo,
really easy to understand,
to turn that laser data and look at it,
da vidimo te laserske podatke
u gledanju laserskih podataka,
at laser data, you can see
is that cyclist.
has turned yellow already,
in the imagery.
da vidite to ovde na slici.
to proceed through the intersection.
će nastaviti pravo na raskrsnici.
his is solidly red,
njegovo je crveno,
is going to come all the way across.
da će taj bajs da pređe preko.
were not paying as much attention.
nisu obratili dovoljno pažnje.
and fortunately for everyone,
i na svu sreću,
some pretty exciting progress,
prilično uzbudljiv napredak
to come to market.
in our simulators every single day,
skoro 5 miliona kilometara svakog dana
that our vehicles have.
naša vozila imaju.
this technology on the road,
ova tehnologija biti na putu,
is to go through the self-driving
automobili pravi put
na američkim putevima.
it's a really complicated problem,
zaista komplikovan problem.
in four and a half years,
da će za četiri ipo godine
to get his driver's license.
to making sure that doesn't happen.
da se to ne desi.
I've got a question for you.
is pretty mind-boggling.
je prilično zapanjujuća.
driver-assisted and fully driverless --
asistencije vozaču i potpuno bezvozača -
going on out there right now.
o tome sada.
for example, Tesla,
kao što je, na primer, Tesla
that's kind of going to be a dead end
that route and get to fully driverless
is going to say, "This feels safe,"
vozač kaže: "Osećam da je ovo sigurno"
and something ugly will happen.
i nešto ružno se desi.
and it's not to say
i ne možemo da kažemo
aren't going to be incredibly valuable.
neće biti neverovatno značajni.
in the interim,
u međuvremenu,
to help someone like Steve get around,
i pomognu ljudima kao što je Stiv
to change our cities
da promene naše gradove
these urban craters we call parking lots,
koje zovemo parking mestima,
with huge interest.
sa velikim interesovanjem.
CU: Thank you. (Applause)
KU: Hvala vama. (Aplauz)
ABOUT THE SPEAKER
Chris Urmson - RoboticistChris Umson is the Director of Self-Driving Cars at Google[x].
Why you should listen
Since 2009, Chris Urmson has headed up Google’s self-driving car program. So far, the team’s vehicles have driven over three quarters of a million miles. While early models included a driverless Prius that TEDsters got to test- ... um, -not-drive in 2011, more and more the team is building vehicles from the ground up, custom-made to go driverless.
Prior to joining Google, Umson was on the faculty of the Robotics Institute at Carnegie Mellon University, where his research focused on motion planning and perception for robotic vehicles. During his time at Carnegie Mellon, he served as Director of Technology for the team that won the 2007 DARPA Urban Challenge.
Chris Urmson | Speaker | TED.com