ABOUT THE SPEAKER
Stuart Firestein - Neuroscientist
Stuart Firestein teaches students and “citizen scientists” that ignorance is far more important to discovery than knowledge.

Why you should listen

You’d think that a scientist who studies how the human brain receives and perceives information would be inherently interested in what we know. But Stuart Firestein says he’s far more intrigued by what we don’t. “Answers create questions,” he says. “We may commonly think that we begin with ignorance and we gain knowledge [but] the more critical step in the process is the reverse of that.”

Firestein, who chairs the biological sciences department at Columbia University, teaches a course about how ignorance drives science. In it -- and in his 2012 book on the topic -- he challenges the idea that knowledge and the accumulation of data create certainty. Facts are fleeting, he says; their real purpose is to lead us to ask better questions.

More profile about the speaker
Stuart Firestein | Speaker | TED.com
TED2013

Stuart Firestein: The pursuit of ignorance

斯圖爾特·法爾斯坦: 對無知的追求

Filmed:
2,046,254 views

真正的科學工作是什麼樣的?神經科學家斯圖爾特·法爾斯坦打趣說:它看起來不大像科學方法,比較像「在黑暗中……四處放屁」。在這個詼諧的演講裡,法爾斯坦通過科學研究的真實情況揭示了科學的真諦,並提議,我們更應該重視我們所不知道的東西——或者是「高品質的無知」;就像我們重視已掌握的知識一樣。
- Neuroscientist
Stuart Firestein teaches students and “citizen scientists” that ignorance is far more important to discovery than knowledge. Full bio

Double-click the English transcript below to play the video.

00:12
There is an ancient proverb諺語 that says
0
495
3558
有句古老的諺語這麼說:
00:16
it's very difficult to find a black黑色 cat in a dark黑暗 room房間,
1
4053
4062
「在一片漆黑的房間裡,是很難找出一隻黑貓的,
00:20
especially特別 when there is no cat.
2
8115
2788
特別當房間裡根本沒有貓的時候。」
00:22
I find this a particularly尤其 apt易於 description描述 of science科學
3
10903
3329
我覺得將這句話用來形容科學
00:26
and how science科學 works作品 --
4
14232
2136
和科學運作的方式,是非常貼切的。
00:28
bumbling裝模作樣 around in a dark黑暗 room房間, bumping碰撞 into things,
5
16368
3320
科學探索就像在漆黑的房間裡亂竄,
然後撞到了某些東西,
00:31
trying to figure數字 out what shape形狀 this might威力 be,
6
19688
2302
試圖了解這個東西是什麼形態,
00:33
what that might威力 be,
7
21990
1444
那個東西又可能是什麼。
00:35
there are reports報告 of a cat somewhere某處 around,
8
23434
2489
有報告說一隻貓就在附近,
00:37
they may可能 not be reliable可靠, they may可能 be,
9
25923
1793
這消息可能不是真的,也可能是真的,
00:39
and so forth向前 and so on.
10
27716
1520
就這樣反反覆覆。
00:41
Now I know this is different不同 than the way most people
11
29236
1976
這樣的說法跟大多數人
00:43
think about science科學.
12
31212
1552
對科學的印象不一樣。
00:44
Science科學, we generally通常 are told,
13
32764
1554
一般我們對「科學」的理解,
00:46
is a very well-ordered良序 mechanism機制 for
14
34318
2750
就是一套高度秩序化的機制,
00:49
understanding理解 the world世界,
15
37068
1301
用以解釋世界的種種現象,
00:50
for gaining取得 facts事實, for gaining取得 data數據,
16
38369
2286
得到事實和數據。
00:52
that it's rule-based有章可循,
17
40655
1553
一切都有規則,
00:54
that scientists科學家們 use this thing called the scientific科學 method方法
18
42208
3241
科學家們運用「科學方法」做研究,
00:57
and we've我們已經 been doing this for 14 generations or so now,
19
45449
2839
至今已有約14代人 (420年),
01:00
and the scientific科學 method方法 is a set of rules規則
20
48288
2571
而「科學方法」就是「一套規則,
01:02
for getting得到 hard, cold facts事實 out of the data數據.
21
50859
4192
用來從數據中得到客觀確鑿的事實。」
01:07
I'd like to tell you that's not the case案件.
22
55051
2095
這裡我告訴大家,並不是這麼回事。
01:09
So there's the scientific科學 method方法,
23
57146
1832
「科學方法」是存在的,
01:10
but what's really going on is this. (Laughter笑聲)
24
58978
2319
但實際發生的事情是…...(笑聲)
01:13
[The Scientific科學 Method方法 vsVS. Farting放屁 Around]
25
61297
958
[科學方法 vs 狗屁瞎扯]
01:14
And it's going on kind of like that.
26
62255
3104
實際的狀況大概像這樣:
01:17
[... in the dark黑暗] (Laughter笑聲)
27
65359
1421
[.....在黑暗中放狗屁](笑聲)
01:18
So what is the difference區別, then,
28
66780
4541
所以,差別在哪裡呢?
01:23
between之間 the way I believe science科學 is pursued追求的
29
71321
3816
我所相信的科學真諦,
01:27
and the way it seems似乎 to be perceived感知?
30
75137
2861
為何與科學在人們心目中的印象如此不同?
01:29
So this difference區別 first came來了 to me in some ways方法
31
77998
2715
我第一次意識到兩者的差異,
01:32
in my dual role角色 at Columbia哥倫比亞 University大學,
32
80713
2097
是在哥倫比亞大學身兼兩職的時候。
01:34
where I'm both a professor教授 and run a laboratory實驗室 in neuroscience神經科學
33
82810
4155
我當時既當教授,
也主持神經科學的實驗室研究,
01:38
where we try to figure數字 out how the brain works作品.
34
86965
2195
研究目的是找出腦部運作的原理。
01:41
We do this by studying研究 the sense of smell,
35
89160
2371
我們的實驗室以研究氣味感知
01:43
the sense of olfaction嗅覺, and in the laboratory實驗室,
36
91531
2531
和人類嗅覺為切入點。在實驗室,
01:46
it's a great pleasure樂趣 and fascinating迷人 work
37
94062
2634
這可是非常吸引人而有趣的工作,
01:48
and exciting扣人心弦 to work with graduate畢業 students學生們 and post-docs博士後
38
96696
2871
我很高興能與那些
碩士研究生和博士後共事,
01:51
and think up cool experiments實驗 to understand理解 how this
39
99567
2611
一起設計有趣的實驗方法
來去瞭解嗅覺如何運作,
01:54
sense of smell works作品 and how the brain might威力 be working加工,
40
102178
2386
以及去瞭解大腦相應地如何運作。
01:56
and, well, frankly坦率地說, it's kind of exhilarating令人振奮.
41
104564
2802
老實說,這项研究相當振奮我心。
01:59
But at the same相同 time, it's my responsibility責任
42
107366
2718
但同時我也身兼教職,
02:02
to teach a large course課程 to undergraduates本科生 on the brain,
43
110084
2949
我要教本科生關於腦科學的一門大課,
02:05
and that's a big subject學科,
44
113033
1075
這可是個大工程,
02:06
and it takes quite相當 a while to organize組織 that,
45
114108
2391
我花了很多工夫設計課程內容,
02:08
and it's quite相當 challenging具有挑戰性的 and it's quite相當 interesting有趣,
46
116499
2811
是個很有挑戰性也很有趣的工作。
02:11
but I have to say, it's not so exhilarating令人振奮.
47
119310
3557
但我得說,設計課程並沒有為我帶來振奮感。
02:14
So what was the difference區別?
48
122867
1396
為什麼呢?差別在哪?
02:16
Well, the course課程 I was and am teaching教學
49
124263
2069
那時到現在我一直在教的這門課,
02:18
is called Cellular細胞的 and Molecular分子 Neuroscience神經科學 - I. (Laughs)
50
126332
6464
叫做「細胞和分子神經學」——壹。(笑聲)
02:24
It's 25 lectures講座 full充分 of all sorts排序 of facts事實,
51
132796
4555
25堂課,介紹各種研究結果,
02:29
it uses使用 this giant巨人 book called "Principles原則 of Neural神經 Science科學"
52
137351
4317
教材是這本鴻篇巨制:「神經科學原理」,
02:33
by three famous著名 neuroscientists神經學家.
53
141668
2334
由三位著名的神經科學家共同編撰。
02:36
This book comes in at 1,414 pages網頁,
54
144002
3781
全書共1414頁,
02:39
it weighs a hefty沉重 seven and a half pounds英鎊.
55
147783
2736
重達7.6英磅,
02:42
Just to put that in some perspective透視,
56
150519
1927
給大家一個概念,
02:44
that's the weight重量 of two normal正常 human人的 brains大腦.
57
152446
3455
這本書的重量相當於兩個正常人類的大腦。
02:47
(Laughter笑聲)
58
155901
3283
(笑聲)
02:51
So I began開始 to realize實現, by the end結束 of this course課程,
59
159184
3267
於是我開始意識到,
當學生們修完了這門課,
02:54
that the students學生們 maybe were getting得到 the idea理念
60
162451
2248
他們也許會認為,
02:56
that we must必須 know everything there is to know about the brain.
61
164699
3031
要瞭解大腦,
得先把現有知識全吸收盡才行。
02:59
That's clearly明確地 not true真正.
62
167730
1762
這想法顯然是不對的。
03:01
And they must必須 also have this idea理念, I suppose假設,
63
169492
2698
我猜他們一定也有這個想法,
03:04
that what scientists科學家們 do is collect蒐集 data數據 and collect蒐集 facts事實
64
172190
3381
科學家的工作就只是收集數據和事實,
03:07
and stick them in these big books圖書.
65
175571
2089
再訂到這樣的厚重教科書裡。
03:09
And that's not really the case案件 either.
66
177660
1407
這同樣也不是事實。
03:11
When I go to a meeting會議, after the meeting會議 day is over
67
179067
3303
我去參加研討會,會議結束之後,
03:14
and we collect蒐集 in the bar酒吧 over a couple一對 of beers啤酒 with my colleagues同事,
68
182370
3097
我和同事們一起
聚在酒吧裡喝上幾瓶啤酒,
03:17
we never talk about what we know.
69
185467
2201
我們談論的話題,
從來就不是已知的研究成果,
03:19
We talk about what we don't know.
70
187668
2166
而是那些我們還不知道的東西。
03:21
We talk about what still has to get doneDONE,
71
189834
2285
我們討論還有什麼問題需要研究,
03:24
what's so critical危急 to get doneDONE in the lab實驗室.
72
192119
2825
什麼是實驗室下一步的重點工作。
03:26
Indeed確實, this was, I think, best最好 said by Marie瑪麗 Curie居里
73
194944
2557
事實上,我認為,居里夫人給出了最好的詮釋:
03:29
who said that one never notices通告 what has been doneDONE
74
197501
2419
「不應該只著眼於自己完成了什麼,
03:31
but only what remains遺跡 to be doneDONE.
75
199920
1461
而應該看到還有什麼需要完成。」
03:33
This was in a letter to her brother哥哥 after obtaining獲得
76
201381
2225
這句話出自居里夫人寫給哥哥的信中,
03:35
her second第二 graduate畢業 degree, I should say.
77
203606
3718
那時她剛拿到第二個碩士學位。
03:39
I have to point out this has always been one of my favorite喜愛 pictures圖片 of Marie瑪麗 Curie居里,
78
207324
2813
我要指出,這一直是
我最喜愛的居里夫人的照片之一。
03:42
because I am convinced相信 that that glow輝光 behind背後 her
79
210137
2303
原因是,我確信她身後的光芒
03:44
is not a photographic攝影 effect影響. (Laughter笑聲)
80
212440
2738
不是電腦特效。(笑聲)
03:47
That's the real真實 thing.
81
215178
1800
那一定是真的在發光。
03:48
It is true真正 that her papers文件 are, to this day,
82
216978
4380
居里夫人的手稿,直到現在都
03:53
stored存儲 in a basement地下室 room房間 in the BibliothBibliothèque Fran弗蘭çaiseAISE
83
221358
2879
還保存在法國國家圖書館的地下貯藏室裡。
03:56
in a concrete具體 room房間 that's lead-lined鉛襯,
84
224237
2197
貯藏室的牆壁以水泥砌成,
中間埋鉛以防輻射。
03:58
and if you're a scholar學者 and you want access訪問 to these notebooks筆記本電腦,
85
226434
2652
如果你以學者的身份申請查閱這些筆記,
04:01
you have to put on a full充分 radiation輻射 hazmat危險品 suit適合,
86
229086
2749
就得先穿上全套的輻射防護服,
04:03
so it's pretty漂亮 scary害怕 business商業.
87
231835
2351
這是頗嚇人的過程。
04:06
Nonetheless儘管如此, this is what I think we were leaving離開 out
88
234186
2796
不過,我認為她的精神恰恰是
04:08
of our courses培訓班
89
236982
1626
我們的課程所欠缺的,
04:10
and leaving離開 out of the interaction相互作用 that we have
90
238608
2526
也是我們這些科學家
在與大眾互動時所欠缺的,
04:13
with the public上市 as scientists科學家們, the what-remains-to-be-done什麼,仍然將要全熟.
91
241134
2973
即「還有什麼需要完成」。
04:16
This is the stuff東東 that's exhilarating令人振奮 and interesting有趣.
92
244107
2634
這是令人振奮和有趣的東西。
04:18
It is, if you will, the ignorance無知.
93
246741
2910
如果你願意,可以叫它「無知」。
04:21
That's what was missing失踪.
94
249651
979
這就是我們目前欠缺的。
04:22
So I thought, well, maybe I should teach a course課程
95
250630
2860
於是我想,或許我應該開一門課
04:25
on ignorance無知,
96
253490
2100
來討論「無知」,
04:27
something I can finally最後 excel高強 at, perhaps也許, for example.
97
255590
3629
或許,這才是我真正擅長的。
04:31
So I did start開始 teaching教學 this course課程 on ignorance無知,
98
259219
1878
於是我真的去開了這門討論「無知」的課,
04:33
and it's been quite相當 interesting有趣
99
261097
1096
得到很有趣的結果。
04:34
and I'd like to tell you to go to the website網站.
100
262193
2086
我架設了網站,大家可以去看看,
04:36
You can find all sorts排序 of information信息 there. It's wide open打開.
101
264279
3636
你能在網站裡找到各式各樣的資訊,
它是完全開放的。
04:39
And it's been really quite相當 an interesting有趣 time for me
102
267915
3523
我很享受在網站上
04:43
to meet遇到 up with other scientists科學家們 who come in and talk
103
271438
1841
和其他科學家一起切磋
04:45
about what it is they don't know.
104
273279
1548
討論這些未知的、等待探索的領域。
04:46
Now I use this word "ignorance無知," of course課程,
105
274827
1985
當然,我現在使用「無知」這個詞,
04:48
to be at least最小 in part部分 intentionally故意地 provocative挑釁,
106
276812
3158
聽起來好像有些惡意挑釁的意味,
04:51
because ignorance無知 has a lot of bad connotations內涵
107
279970
2390
因為「無知」有很多負面意思,
04:54
and I clearly明確地 don't mean any of those.
108
282360
2005
但它們都不是我的本意。
04:56
So I don't mean stupidity糊塗事, I don't mean a callow乳臭未乾 indifference漠不關心
109
284365
3505
我指的不是愚笨,
04:59
to fact事實 or reason原因 or data數據.
110
287870
2308
也並非是指冷漠看待事實、推理或數據。
05:02
The ignorant愚昧 are clearly明確地 unenlightened閉塞, unaware不知道,
111
290178
3271
這種「無知」是未被啟蒙的,沒意識到的,
05:05
uninformed不知情, and present當下 company公司 today今天 excepted除外,
112
293449
3307
不接收資訊,像今日大家認為的大公司
05:08
often經常 occupy佔據 elected當選 offices辦事處, it seems似乎 to me.
113
296756
2908
裡頭坐滿我們選出的官員,我是這麼想的。
05:11
That's another另一個 story故事, perhaps也許.
114
299664
1806
這大概又是另一個議題了。
05:13
I mean a different不同 kind of ignorance無知.
115
301470
1633
我所指的「無知」是另一種意義的無知。
05:15
I mean a kind of ignorance無知 that's less pejorative貶義,
116
303103
2268
它不包含那麼多的負面意義,
05:17
a kind of ignorance無知 that comes from a communal公社 gap間隙 in our knowledge知識,
117
305371
3487
而是說我們在知識上共同的差距,
05:20
something that's just not there to be known已知
118
308858
1865
一些我們還沒有瞭解的東西,
05:22
or isn't known已知 well enough足夠 yet然而 or we can't make predictions預測 from,
119
310723
2821
或者瞭解得還不夠的東西,
或者我們無法預知的東西。
05:25
the kind of ignorance無知 that's maybe best最好 summed總結 up
120
313544
2318
用一言以蔽之,
05:27
in a statement聲明 by James詹姆士 Clerk書記 Maxwell麥克斯韋,
121
315862
1845
這句話是詹姆士‧克拉克‧麥斯威爾說的,
05:29
perhaps也許 the greatest最大 physicist物理學家 between之間 Newton牛頓 and Einstein愛因斯坦,
122
317707
3449
他大概是牛頓和愛因斯坦之間
最偉大的物理學家,
05:33
who said, "Thoroughly conscious意識 ignorance無知
123
321156
2301
他說過:「完全自覺自醒的無知
05:35
is the prelude序幕 to every一切 real真實 advance提前 in science科學."
124
323457
2568
是每一次科學的實質性進步的前奏。」
05:38
I think it's a wonderful精彩 idea理念:
125
326025
1388
我認為他提出了很棒的看法:
05:39
thoroughly conscious意識 ignorance無知.
126
327413
3147
「完全自覺自醒的無知」
05:42
So that's the kind of ignorance無知 that I want to talk about today今天,
127
330560
2421
也是我今天要探討的「無知」。
05:44
but of course課程 the first thing we have to clear明確 up
128
332981
1519
不過首先我們得弄清楚
05:46
is what are we going to do with all those facts事實?
129
334500
2103
該如何對待現有的研究成果?
05:48
So it is true真正 that science科學 piles up at an alarming驚人 rate.
130
336603
3674
各式各樣的科學研究成果
以驚人的速率被提出,
05:52
We all have this sense that science科學 is this mountain of facts事實,
131
340277
2810
讓我們覺得科學似乎
就等於這座研究成果堆成的高山。
05:55
this accumulation積累 model模型 of science科學, as many許多 have called it,
132
343087
4036
科學的這種積累模式,就象很多人說的,
05:59
and it seems似乎 impregnable堅不可摧, it seems似乎 impossible不可能.
133
347123
2451
它似乎堅不可摧,也似乎不可企及
06:01
How can you ever know all of this?
134
349574
1314
一個人怎麼能完全瞭解這裡頭所有的知識?
06:02
And indeed確實, the scientific科學 literature文學 grows成長 at an alarming驚人 rate.
135
350888
3581
事實上,科學文獻在以驚人的速度增長。
06:06
In 2006, there were 1.3 million百萬 papers文件 published發表.
136
354469
3654
2006年發表的科學論文總計130萬篇,
06:10
There's about a two-and-a-half-percent兩個和一個半%的 yearly每年 growth發展 rate,
137
358123
2632
年增長率約2.5%。
06:12
and so last year we saw over one and a half million百萬 papers文件 being存在 published發表.
138
360755
4390
去年,我們看到有150萬篇論文發表,
06:17
Divide劃分 that by the number of minutes分鐘 in a year,
139
365145
2230
這個數值除以一年的總分鐘數,
06:19
and you wind up with three new papers文件 per minute分鐘.
140
367375
3138
意味著每分鐘就有三篇論文發表。
06:22
So I've been up here a little over 10 minutes分鐘,
141
370513
1482
我站在這裡超過十分鐘了,
06:23
I've already已經 lost丟失 three papers文件.
142
371995
1776
已經錯過了三篇論文沒讀
(*講者計算有誤 他會錯過三十篇)
06:25
I have to get out of here actually其實. I have to go read.
143
373771
2840
我得離開這裡,趕緊去讀那些論文呢。
06:28
So what do we do about this? Well, the fact事實 is
144
376611
3446
我們拿這些研究成果怎麼辦呢?事實上,
06:32
that what scientists科學家們 do about it is a kind of a controlled受控 neglect忽略, if you will.
145
380057
4509
科學家的工作也是
某種程度的控制下的忽視。
06:36
We just don't worry擔心 about it, in a way.
146
384566
2664
可以說,我們根本不去操這份心。
06:39
The facts事實 are important重要. You have to know a lot of stuff東東
147
387230
2243
研究成果固然重要,你要知道很多東西,
06:41
to be a scientist科學家. That's true真正.
148
389473
1810
才能成為科學家,這點沒錯。
06:43
But knowing會心 a lot of stuff東東 doesn't make you a scientist科學家.
149
391283
2927
但知識淵博並不能使你成為科學家。
06:46
You need to know a lot of stuff東東 to be a lawyer律師
150
394210
2665
要作律師也得掌握很多知識,
06:48
or an accountant會計 or an electrician電工 or a carpenter木匠.
151
396875
3892
作會計師、電工、木匠亦然。
06:52
But in science科學, knowing會心 a lot of stuff東東 is not the point.
152
400767
3610
在科學領域裡,知識淵博並不是重點。
06:56
Knowing會心 a lot of stuff東東 is there to help you get
153
404377
3556
知道的多是為了讓你
06:59
to more ignorance無知.
154
407933
1388
更好地去探索「無知」。
07:01
So knowledge知識 is a big subject學科, but I would say
155
409321
2510
我要說,知識是個重要的議題,
07:03
ignorance無知 is a bigger one.
156
411831
2487
但「無知」更為重要。
07:06
So this leads引線 us to maybe think about, a little bit
157
414318
2194
這或許能讓我們想到,多多少少
07:08
about, some of the models楷模 of science科學 that we tend趨向 to use,
158
416528
2883
想到一些常用來類比科學的模型。
07:11
and I'd like to disabuse省悟 you of some of them.
159
419411
1825
我要糾正你們對這些模型的錯誤看法。
07:13
So one of them, a popular流行 one, is that scientists科學家們
160
421236
2313
當中一個很受歡迎的理論是,
07:15
are patiently耐心地 putting the pieces of a puzzle難題 together一起
161
423549
2628
科學家們將一片片拼圖耐心組合,
07:18
to reveal揭示 some grand盛大 scheme方案 or another另一個.
162
426177
2773
去揭示一個又一個重大的發現。
07:20
This is clearly明確地 not true真正. For one, with puzzles謎題,
163
428950
2558
這顯然不是那麼回事。首先,說到拼圖,
07:23
the manufacturer生產廠家 has guaranteed保證 that there's a solution.
164
431508
3499
廠家能保證你一定能做出完整的圖案。
07:27
We don't have any such這樣 guarantee保證.
165
435007
1749
而我們對科學研究卻沒法打保票。
07:28
Indeed確實, there are many許多 of us who aren't so sure about the manufacturer生產廠家.
166
436756
3155
事實上,我們中的很多人對廠家也不太有信心。
07:31
(Laughter笑聲)
167
439911
3063
(笑聲)
07:34
So I think the puzzle難題 model模型 doesn't work.
168
442974
1757
所以我認為拼圖模型是說不通的。
07:36
Another另一個 popular流行 model模型 is that science科學 is busy unraveling解開 things
169
444731
3514
另一個受歡迎的模型是,
科學就是忙著解開層層謎題,
07:40
the way you unravel the peels of an onion洋蔥.
170
448245
2196
就像剝洋蔥一樣。
07:42
So peel by peel, you take away the layers of the onion洋蔥
171
450441
2989
一層接著一層,你剝開洋蔥的皮,
07:45
to get at some fundamental基本的 kernel核心 of truth真相.
172
453430
2319
最後得到核心真相。
07:47
I don't think that's the way it works作品 either.
173
455749
2187
我也不認為科學是這樣運作的。
07:49
Another另一個 one, a kind of popular流行 one, is the iceberg冰山 idea理念,
174
457936
2934
另一種理論,也蠻有名的,就是冰山模型:
07:52
that we only see the tip小費 of the iceberg冰山 but underneath
175
460870
2460
我們所見只是冰山一角,
07:55
is where most of the iceberg冰山 is hidden.
176
463330
2185
水面之下隱藏的冰山才占絕大部分。
07:57
But all of these models楷模 are based基於 on the idea理念 of a large body身體 of facts事實
177
465515
3554
這些模型都基於同一個理念,
即存在一個龐大的知識體系,
08:01
that we can somehow不知何故 or another另一個 get completed完成.
178
469069
2420
我們能夠通過這樣那樣的方法使之完善。
08:03
We can chip芯片 away at this iceberg冰山 and figure數字 out what it is,
179
471489
3343
我們可以鏟開冰山,去研究它究竟是怎麼回事,
08:06
or we could just wait for it to melt熔化, I suppose假設, these days,
180
474832
2605
或者以現今的氣候,等它融化就好。
08:09
but one way or another另一個 we could get to the whole整個 iceberg冰山. Right?
181
477437
3227
但不論如何我們都能看透冰山的全貌,對吧?
08:12
Or make it manageable管理. But I don't think that's the case案件.
182
480664
2467
或讓它變得可控。但我不這麼認為。
08:15
I think what really happens發生 in science科學
183
483131
2399
我認為科學真正的模型
08:17
is a model模型 more like the magic魔法 well,
184
485530
1830
更接近一座魔法水井,
08:19
where no matter how many許多 buckets水桶 you take out,
185
487360
1837
不論你從井中打了多少桶水,
08:21
there's always another另一個 bucket of water to be had,
186
489197
2112
都還能再打出一桶。
08:23
or my particularly尤其 favorite喜愛 one,
187
491309
2127
還有一個我特別鍾愛的模型,
08:25
with the effect影響 and everything, the ripples漣漪 on a pond池塘.
188
493436
2939
考慮到種種影響和元素,科學就像是池塘裡的漣漪。
08:28
So if you think of knowledge知識 being存在 this ever-expanding不斷擴大 ripple波紋 on a pond池塘,
189
496375
3127
如果把知識比作池塘裡不斷漾開的漣漪,
08:31
the important重要 thing to realize實現 is that our ignorance無知,
190
499502
3382
那麼重要的是要意識到我們的「無知」,
08:34
the circumference圓周 of this knowledge知識, also grows成長 with knowledge知識.
191
502884
3382
就像漣漪的圓周長一樣,
隨著知識的擴大而不斷擴展。
08:38
So the knowledge知識 generates生成 ignorance無知.
192
506266
2763
知識產生「無知」。
08:41
This is really well said, I thought, by George喬治 Bernard伯納德 Shaw.
193
509029
2915
蕭伯納說過一句很棒的話,
08:43
This is actually其實 part部分 of a toast烤麵包 that he delivered交付
194
511944
2677
他在慶祝愛因斯坦工作成績的晚宴上
08:46
to celebrate慶祝 Einstein愛因斯坦 at a dinner晚餐 celebrating慶祝 Einstein's愛因斯坦 work,
195
514621
3677
為愛因斯坦致祝酒詞,
08:50
in which哪一個 he claims索賠 that science科學
196
518298
1414
他認為,與其說科學在解決問題,
08:51
just creates創建 more questions問題 than it answers答案.
["Science科學 is always wrong錯誤. It never solves解決了 a problem問題 without creating創建 10 more."]
197
519712
2265
不如說是在製造問題。
[科學總是錯的。每當解決了一個問題,它總是製造出十個新的問題。]
08:53
I find that kind of glorious輝煌, and I think he's precisely恰恰 right,
198
521977
3542
我覺得這真是至理名言了。
他說的一點沒錯。
08:57
plus it's a kind of job工作 security安全.
199
525519
2526
這也說明了我們永遠不會失業。
09:00
As it turns out, he kind of cribbed那兒剽竊 that
200
528045
2726
後來發現,這可能是借鑒了
09:02
from the philosopher哲學家 Immanuel伊曼紐爾 Kant康德
201
530771
1852
哲學家康德的理念。
09:04
who a hundred years年份 earlier had come up with this idea理念
202
532623
2645
早在一百年前,
康德就提出了「問題相生」的概念,
09:07
of question propagation傳播, that every一切 answer回答 begets相生 more questions問題.
203
535268
3808
每個答案都會帶來更多的問題。
09:11
I love that term術語, "question propagation傳播,"
204
539076
2199
我喜歡「 問題相生」這個術語,
09:13
this idea理念 of questions問題 propagating傳播 out there.
205
541275
2739
這個「問題會衍生問題」的概念。
09:16
So I'd say the model模型 we want to take is not
206
544014
1887
所以我要說,我們想採用的模型,並不是
09:17
that we start開始 out kind of ignorant愚昧 and we get some facts事實 together一起
207
545901
3509
要從無知開始,共同找到一些現象,
09:21
and then we gain獲得 knowledge知識.
208
549410
2143
然後獲得獲得某種知識。
09:23
It's rather kind of the other way around, really.
209
551553
2379
實際情況正好相反。
09:25
What do we use this knowledge知識 for?
210
553932
1907
現有的知識有什麼用?
09:27
What are we using運用 this collection採集 of facts事實 for?
211
555839
2528
至今收集到的事實有什麼用?
09:30
We're using運用 it to make better ignorance無知,
212
558367
2857
我們要用它們來得到更好的「無知」,
09:33
to come up with, if you will, higher-quality更高質量 ignorance無知.
213
561224
3079
得到「高品質的無知」。
09:36
Because, you know, there's low-quality低質量 ignorance無知
214
564303
1872
因為有低品質的無知,
09:38
and there's high-quality高質量 ignorance無知. It's not all the same相同.
215
566175
2413
相對也有高品質的,兩者並不相同。
09:40
Scientists科學家們 argue爭論 about this all the time.
216
568588
2370
科學家們總是為此爭論。
09:42
Sometimes有時 we call them bull公牛 sessions會議.
217
570958
1965
有時我們稱它為鬥牛大會,
09:44
Sometimes有時 we call them grant發放 proposals建議.
218
572923
1918
有時我們稱它為申請研究基金。
09:46
But nonetheless儘管如此,, it's what the argument論據 is about.
219
574841
3508
無論是哪個,我們爭論的點都是相同的,
09:50
It's the ignorance無知. It's the what we don't know.
220
578349
1844
那就是「無知」,什麼是我們不知道的,
09:52
It's what makes品牌 a good question.
221
580193
2690
怎樣才是一個好問題。
09:54
So how do we think about these questions問題?
222
582883
1630
我們又怎麼看待這些問題呢?
09:56
I'm going to show顯示 you a graph圖形 that shows節目 up
223
584513
1952
給大家看一張圖,
09:58
quite相當 a bit on happy快樂 hour小時 posters海報 in various各個 science科學 departments部門.
224
586465
3867
它經常被各個科學部門用來做聚會的海報。
10:02
This graph圖形 asks the relationship關係 between之間 what you know
225
590332
4221
這個圖表探討「你知道什麼」和「你瞭解多少」
10:06
and how much you know about it.
226
594553
2190
兩者之間的關係。
10:08
So what you know, you can know anywhere隨地 from nothing to everything, of course課程,
227
596743
3515
「你知道什麼」,你可以從一無所知到無所不知;
10:12
and how much you know about it can be anywhere隨地
228
600258
1683
「你瞭解多少」,則可以從只瞭解一點點
10:13
from a little to a lot.
229
601941
2423
到瞭解很多。
10:16
So let's put a point on the graph圖形. There's an undergraduate大學本科.
230
604364
4232
讓我們在這張圖表上畫一個點,這是一名大學生。
10:20
Doesn't know much but they have a lot of interest利益.
231
608596
2364
瞭解程度不高,但有很多的興趣。
10:22
They're interested有興趣 in almost幾乎 everything.
232
610960
1691
他們幾乎對什麼事都感興趣。
10:24
Now you look at a master's碩士 student學生, a little further進一步 along沿 in their education教育,
233
612651
3454
現在來看一個碩士生,
因為他受教育的時間更長,
10:28
and you see they know a bit more,
234
616105
1351
所以他們瞭解程度更高,
10:29
but it's been narrowed收窄 somewhat有些.
235
617456
1890
但知識面變窄了。
10:31
And finally最後 you get your Ph博士.D., where it turns out
236
619346
2719
接下來終於你拿到博士學位了,結果…
10:34
you know a tremendous巨大 amount about almost幾乎 nothing. (Laughter笑聲)
237
622065
5105
瞭解很深,但知識面近乎為零。(笑聲)
10:39
What's really disturbing煩擾的 is the trend趨勢 line that goes through通過 that
238
627170
3781
令人困擾的是穿越這些點的趨勢線,
10:42
because, of course課程, when it dips驟降 below下面 the zero axis, there,
239
630951
3775
因為當它達到零以下,這個地方,
10:46
it gets得到 into a negative area.
240
634726
2262
它就進入了負值區域,
10:48
That's where you find people like me, I'm afraid害怕.
241
636988
2915
恐怕我這樣的人都在那兒了。
10:51
So the important重要 thing here is that this can all be changed.
242
639903
3368
不過,重要的是這都可以改變。
10:55
This whole整個 view視圖 can be changed
243
643271
1804
整個觀點可以變得截然不同,
10:57
by just changing改變 the label標籤 on the x-axisx軸.
244
645075
3161
只要把 X 軸的標籤改掉就好了。
11:00
So instead代替 of how much you know about it,
245
648236
1917
我們把「你瞭解多少」的標籤
11:02
we could say, "What can you ask about it?"
246
650153
3541
換成「你能問出什麼」。
11:05
So yes, you do need to know a lot of stuff東東 as a scientist科學家,
247
653694
2867
當然,作為一名科學家確實需要知識淵博,
11:08
but the purpose目的 of knowing會心 a lot of stuff東東
248
656561
2629
但吸收大量知識的目的
11:11
is not just to know a lot of stuff東東. That just makes品牌 you a geek極客, right?
249
659190
2587
並不在於獲得各種知識,以致成為技客。
11:13
Knowing會心 a lot of stuff東東, the purpose目的 is
250
661777
2138
吸收大量知識是為了
11:15
to be able能夠 to ask lots of questions問題,
251
663915
1676
能提出很多問題,
11:17
to be able能夠 to frame thoughtful周到, interesting有趣 questions問題,
252
665591
3088
能架構出深思熟慮的、有趣的問題,
11:20
because that's where the real真實 work is.
253
668679
1725
而才是真正的科學工作。
11:22
Let me give you a quick idea理念 of a couple一對 of these sorts排序 of questions問題.
254
670404
2552
我給大家舉兩個例子。
11:24
I'm a neuroscientist神經學家, so how would we come up
255
672956
2163
我是一名神經科學家,
在神經學這個領域,
11:27
with a question in neuroscience神經科學?
256
675119
1431
我們是如何提出問題的呢?
11:28
Because it's not always quite相當 so straightforward直截了當.
257
676550
2669
情況並不是總是直截了當的。
11:31
So, for example, we could say, well what is it that the brain does?
258
679219
2559
比如,我們可以問,大腦到底起什麼作用?
11:33
Well, one thing the brain does, it moves移動 us around.
259
681778
1814
大腦的一項功能是指揮身體行動,
11:35
We walk步行 around on two legs.
260
683592
2005
讓我們以雙腳行走。
11:37
That seems似乎 kind of simple簡單, somehow不知何故 or another另一個.
261
685597
1851
這似乎太簡單了。
11:39
I mean, virtually實質上 everybody每個人 over 10 months個月 of age年齡
262
687448
2725
幾乎每個年齡超過10個月的人
11:42
walks散步 around on two legs, right?
263
690173
2172
都能以雙腳行走,對吧?
11:44
So that maybe is not that interesting有趣.
264
692345
1391
所以說這個問題沒什麼意思。
11:45
So instead代替 maybe we want to choose選擇 something a little more complicated複雜 to look at.
265
693736
3148
所以我們可能會選擇
提出一些更複雜些的問題去研究。
11:48
How about the visual視覺 system系統?
266
696884
2775
視覺系統怎麼樣?
11:51
There it is, the visual視覺 system系統.
267
699659
1627
好,就選視覺系統了。
11:53
I mean, we love our visual視覺 systems系統. We do all kinds of cool stuff東東.
268
701286
3248
我們喜歡視覺系統,可以搞很酷的研究。
11:56
Indeed確實, there are over 12,000 neuroscientists神經學家
269
704534
3391
事實上,有超過一萬兩千名神經學家
11:59
who work on the visual視覺 system系統,
270
707925
1580
以視覺系統為研究對象,
12:01
from the retina視網膜 to the visual視覺 cortex皮質,
271
709505
2081
從視網膜到視覺皮層,
12:03
in an attempt嘗試 to understand理解 not just the visual視覺 system系統
272
711586
2565
這些研究不僅僅是局限在視覺系統,
12:06
but to also understand理解 how general一般 principles原則
273
714151
3024
還包括如何通過視覺系統研究去瞭解
12:09
of how the brain might威力 work.
274
717175
1951
大腦是如何運作的普遍原理。
12:11
But now here's這裡的 the thing:
275
719126
1660
但目前的情況是:
12:12
Our technology技術 has actually其實 been pretty漂亮 good
276
720786
2480
我們現在擁有很好的
12:15
at replicating複製 what the visual視覺 system系統 does.
277
723266
2590
複製視覺系統的技術。
12:17
We have TV電視, we have movies電影,
278
725856
3023
我們有電視,我們有電影,
12:20
we have animation動畫, we have photography攝影,
279
728879
2495
我們有動畫,我們有攝影,
12:23
we have pattern模式 recognition承認, all of these sorts排序 of things.
280
731374
3151
我們有模型識別技術,
很多其他的這一類技術。
12:26
They work differently不同 than our visual視覺 systems系統 in some cases,
281
734525
2646
有些視覺技術的工作原理
和視覺系統不大一樣。
12:29
but nonetheless儘管如此, we've我們已經 been pretty漂亮 good at
282
737171
1591
儘管如此,我們現有的視覺技術
12:30
making製造 a technology技術 work like our visual視覺 system系統.
283
738762
3476
已經與視覺系統非常近似了。
12:34
Somehow不知何故 or another另一個, a hundred years年份 of robotics機器人,
284
742238
2936
但是,機器人技術的發展已經有一百年了,
12:37
you never saw a robot機器人 walk步行 on two legs,
285
745174
2266
你還沒見過一個用兩條腿走路的機器人。
12:39
because robots機器人 don't walk步行 on two legs
286
747440
2163
因為機器人不是用兩條腿走路的,
12:41
because it's not such這樣 an easy簡單 thing to do.
287
749603
2390
這可不是一件易事。
12:43
A hundred years年份 of robotics機器人,
288
751993
1528
一百年的機器人技術發展,
12:45
and we can't get a robot機器人 that can move移動 more than a couple一對 steps腳步 one way or the other.
289
753521
3367
我們甚至不能讓機器人走上一兩步。
12:48
You ask them to go up an inclined plane平面, and they fall秋季 over.
290
756888
2572
你讓機器人走個斜面試試,它們肯定會摔倒。
12:51
Turn around, and they fall秋季 over. It's a serious嚴重 problem問題.
291
759460
2004
讓它們轉身,它們也會摔倒。
這是個科技上的難題。
12:53
So what is it that's the most difficult thing for a brain to do?
292
761464
3547
那麼,對大腦來說,
什麼是最難完成的任務呢?
12:57
What ought應該 we to be studying研究?
293
765011
1623
我們必需要研究的是什麼?
12:58
Perhaps也許 it ought應該 to be walking步行 on two legs, or the motor發動機 system系統.
294
766634
4295
或許是研究以雙腳走路,或動力系統。
13:02
I'll give you an example from my own擁有 lab實驗室,
295
770929
1735
我給你們舉個我自己實驗室的例子,
13:04
my own擁有 particularly尤其 smelly question,
296
772664
1725
我的實驗小組研究嗅覺系統,
13:06
since以來 we work on the sense of smell.
297
774389
2099
於是設法找出嗅覺方面的問題。
13:08
But here's這裡的 a diagram of five molecules分子
298
776488
3228
這張圖裡有五個分子,
13:11
and sort分類 of a chemical化學 notation符號.
299
779716
1510
和它們的化學式。
13:13
These are just plain old molecules分子, but if you sniff吸氣 those molecules分子
300
781226
2996
這都是些最普通的分子了,但如果你
13:16
up these two little holes in the front面前 of your face面對,
301
784222
2470
用你臉上這兩個小洞洞
來聞聞那些分子的話,
13:18
you will have in your mind心神 the distinct不同 impression印象 of a rose玫瑰.
302
786692
3874
你的腦海中會出現
一朵玫瑰的鮮明印象。
13:22
If there's a real真實 rose玫瑰 there, those molecules分子 will be the ones那些,
303
790566
2158
如果說真的有玫瑰的話,
那些分子就是「玫瑰」。
13:24
but even if there's no rose玫瑰 there,
304
792724
1560
但即使沒有玫瑰,
13:26
you'll你會 have the memory記憶 of a molecule分子.
305
794284
1591
你也會有關於這些分子的記憶。
13:27
How do we turn molecules分子 into perceptions看法?
306
795875
3104
我們怎麼將這些分子轉化為知覺?
13:30
What's the process處理 by which哪一個 that could happen發生?
307
798979
1857
會發生什麼樣的轉變過程?
13:32
Here's這裡的 another另一個 example: two very simple簡單 molecules分子, again in this kind of chemical化學 notation符號.
308
800836
3960
再舉一個例子,這是兩個簡單的分子化學式。
13:36
It might威力 be easier更輕鬆 to visualize想像 them this way,
309
804796
2077
或許這樣看比較容易想像,
13:38
so the gray灰色 circles are carbon atoms原子, the white白色 ones那些
310
806873
2794
灰色圓圈代表碳原子,
白色圓圈代表氫原子,
13:41
are hydrogen atoms原子 and the red ones那些 are oxygen atoms原子.
311
809667
2775
紅色圓圈代表氧原子。
13:44
Now these two molecules分子 differ不同 by only one carbon atom原子
312
812442
4298
那麼這兩個分子式的差別
就在於一個碳原子
13:48
and two little hydrogen atoms原子 that ride along沿 with it,
313
816740
2688
和兩個與之相連的氫原子,
13:51
and yet然而 one of them, heptyl acetate醋酸鹽,
314
819428
1986
其中一個分子叫乙酸庚酯
13:53
has the distinct不同 odor氣味 of a pear,
315
821414
2311
帶著特殊的梨的氣味。
13:55
and hexyl acetate醋酸鹽 is unmistakably明白地 banana香蕉.
316
823725
3839
(另一個是)醋酸己酯,卻有一種明顯的香蕉氣味。
13:59
So there are two really interesting有趣 questions問題 here, it seems似乎 to me.
317
827564
2557
這裡我發現兩個有趣的問題
14:02
One is, how can a simple簡單 little molecule分子 like that
318
830121
3215
其一,如此一個簡單的小分子
14:05
create創建 a perception知覺 in your brain that's so clear明確
319
833336
2468
是如何在你的腦海裡
建立起如此清晰的認識
14:07
as a pear or a banana香蕉?
320
835804
1742
讓你輕鬆辨別出一顆梨,或一條香蕉?
14:09
And secondly其次, how the hell地獄 can we tell the difference區別
321
837546
3121
其二,為什麼我們能辨別出兩者的差異
14:12
between之間 two molecules分子 that differ不同 by a single carbon atom原子?
322
840667
4315
兩個分子僅僅只有一個碳原子鍵的不同而已。
14:16
I mean, that's remarkable卓越 to me,
323
844982
1646
這是對我意義重大的發現,
14:18
clearly明確地 the best最好 chemical化學 detector探測器 on the face面對 of the planet行星.
324
846628
3032
地球上最精密的化學探測器,
顯然長在我們臉上。
14:21
And you don't even think about it, do you?
325
849660
2776
你甚至從來都沒想過這些,對吧?
14:24
So this is a favorite喜愛 quote引用 of mine that takes us
326
852436
2617
讓我用我喜愛的名言拉回主題
14:27
back to the ignorance無知 and the idea理念 of questions問題.
327
855053
1746
「無知」和「提出問題」
14:28
I like to quote引用 because I think dead people
328
856799
2019
我喜愛引用名人名言,因為我覺得
14:30
shouldn't不能 be excluded排除 from the conversation會話.
329
858818
2543
死者也應該參與這樣的討論。
14:33
And I also think it's important重要 to realize實現 that
330
861361
1939
而我也認為有必要彰顯出
14:35
the conversation's對話的 been going on for a while, by the way.
331
863300
2462
這個討論已經存在好一段時間了。
14:37
So Erwin歐文 Schrodinger薛定諤, a great quantum量子 physicist物理學家
332
865762
2758
薛定諤,偉大的量子物理學家,
14:40
and, I think, philosopher哲學家, points out how you have to
333
868520
2566
我覺得他也是哲學家,他指出你必須
14:43
"abide遵守 by ignorance無知 for an indefinite不定 period" of time.
334
871086
3465
「保持無知,以面對浩瀚無垠的時間」
14:46
And it's this abiding守法 by ignorance無知
335
874551
1987
而我們要學習的課題,
14:48
that I think we have to learn學習 how to do.
336
876538
1666
就是怎麼「保持無知」。
14:50
This is a tricky狡猾 thing. This is not such這樣 an easy簡單 business商業.
337
878204
2977
這是個棘手的問題,並非易事。
14:53
I guess猜測 it comes down to our education教育 system系統,
338
881181
1959
我想得從我們的教育系統探討起,
14:55
so I'm going to talk a little bit about ignorance無知 and education教育,
339
883140
2457
這裡我談一點「無知」和教育間的關係,
14:57
because I think that's where it really has to play out.
340
885597
2268
因為我認為必需教導「無知」的概念。
14:59
So for one, let's face面對 it,
341
887865
2267
首先,讓我們面對現實,
15:02
in the age年齡 of Google谷歌 and Wikipedia維基百科,
342
890132
3352
這是個 Google 和維基百科的時代,
15:05
the business商業 model模型 of the university大學
343
893484
1793
大學的運營模式,
15:07
and probably大概 secondary次要 schools學校 is simply只是 going to have to change更改.
344
895277
3421
甚至是我們的中學,
真的都需要一些實質的改變。
15:10
We just can't sell facts事實 for a living活的 anymore.
345
898698
1901
我們真的不能光靠販賣「事實」為生了。
15:12
They're available可得到 with a click點擊 of the mouse老鼠,
346
900599
2050
學生們動一動滑鼠就能得資訊,
15:14
or if you want to, you could probably大概 just ask the wall
347
902649
2496
如果你想,大概敲牆問一問也行。
15:17
one of these days, wherever哪裡 they're going to hide隱藏 the things
348
905145
1712
現今社會中,不管你把東西藏在哪裡,
15:18
that tell us all this stuff東東.
349
906857
1417
科技都能讓你無所遁形。
15:20
So what do we have to do? We have to give our students學生們
350
908274
2883
那我們得做什麼?我們得告訴我們的學生,
15:23
a taste味道 for the boundaries邊界, for what's outside that circumference圓周,
351
911157
3896
探索邊界的滋味,漣漪之外有什麼,
15:27
for what's outside the facts事實, what's just beyond the facts事實.
352
915053
4308
事實之外是什麼,事實背後有什麼。
15:31
How do we do that?
353
919361
2157
我們應該怎麼做?
15:33
Well, one of the problems問題, of course課程,
354
921518
1508
當然,我們一定會遇到的困難之一
15:35
turns out to be testing測試.
355
923026
2109
就是考試。
15:37
We currently目前 have an educational教育性 system系統
356
925135
2649
我們目前的教育體系
15:39
which哪一個 is very efficient高效 but is very efficient高效 at a rather bad thing.
357
927784
3709
很高效,但效率的指向並不好。
15:43
So in second第二 grade年級, all the kids孩子 are interested有興趣 in science科學,
358
931493
2974
所有上二年級的孩子都對科學感興趣,
15:46
the girls女孩 and the boys男孩.
359
934467
1263
無論女孩還是男孩,
15:47
They like to take stuff東東 apart距離. They have great curiosity好奇心.
360
935730
3974
都喜歡拆解東西來研究,好奇心強烈,
15:51
They like to investigate調查 things. They go to science科學 museums博物館.
361
939704
2499
喜歡做調查,參觀科學博物館,
15:54
They like to play around. They're in second第二 grade年級.
362
942203
6188
喜歡四處玩耍。這就是二年級生的情況,
16:00
They're interested有興趣.
363
948407
1494
他們對什麼都感興趣。
16:01
But by 11th or 12th grade年級, fewer than 10 percent百分
364
949901
2934
但到了高中二年級或三年級,只剩不到10%的學生
16:04
of them have any interest利益 in science科學 whatsoever任何,
365
952835
3075
還對科學抱持興趣,
16:07
let alone單獨 a desire慾望 to go into science科學 as a career事業.
366
955910
2945
更別提想從事科學方面的工作了。
16:10
So we have this remarkably異常 efficient高效 system系統
367
958855
2982
我們有個極其高效的系統
16:13
for beating跳動 any interest利益 in science科學 out of everybody's每個人的 head.
368
961837
3973
來打擊孩子們對於科學的興致。
16:17
Is this what we want?
369
965810
1914
這是我們想要的嗎?
16:19
I think this comes from what a teacher老師 colleague同事 of mine
370
967724
2342
我的一位大學老師同事把這
16:22
calls電話 "the bulimic貪食症 method方法 of education教育."
371
970066
2722
叫做「填鴨式教育」
16:24
You know. You can imagine想像 what it is.
372
972788
1373
大家都知道,能想像出那是什麼情形。
16:26
We just jam果醬 a whole整個 bunch of facts事實 down their throats喉嚨 over here
373
974161
2948
我們只是在把一大堆事實
塞進他們的喉嚨裡,
16:29
and then they puke嘔吐 it up on an exam考試 over here
374
977109
2354
然後在考試的時候讓他們吐出來,
16:31
and everybody每個人 goes home with no added添加 intellectual知識分子 heft分量 whatsoever任何.
375
979463
4579
沒有一個學生真正帶著知識回家。
16:36
This can't possibly或者 continue繼續 to go on.
376
984042
2081
我們不能這樣繼續下去了。
16:38
So what do we do? Well the geneticists遺傳學家, I have to say,
377
986123
2334
那我們該怎麼辦?我得說,遺傳學家
16:40
have an interesting有趣 maxim格言 they live生活 by.
378
988457
1983
他們中流傳著很有趣的格言。
16:42
Geneticists遺傳學家 always say, you always get what you screen屏幕 for.
379
990440
5252
遺傳學家總說:「你總能得到想要篩選出來的結果。」
16:47
And that's meant意味著 as a warning警告.
380
995692
2861
我們可以把這句話當成警告。
16:50
So we always will get what we screen屏幕 for,
381
998553
2319
我們總能得到想要篩選出來的結果。
16:52
and part部分 of what we screen屏幕 for is in our testing測試 methods方法.
382
1000872
3455
我們想要篩選出來的結果
部分存在於考試方法中。
16:56
Well, we hear a lot about testing測試 and evaluation評測,
383
1004327
3243
我們已經聽過太多的測試呀,評估呀,
16:59
and we have to think carefully小心 when we're testing測試
384
1007570
2187
當我們實際去測試時,我們得想清楚
17:01
whether是否 we're evaluating評估 or whether是否 we're weeding除草,
385
1009757
3087
是在做評估還是要做淘汰,
17:04
whether是否 we're weeding除草 people out,
386
1012844
1459
是否在做淘汰,
17:06
whether是否 we're making製造 some cut.
387
1014303
3134
是否在做精簡。
17:09
Evaluation評估 is one thing. You hear a lot about evaluation評測
388
1017437
2641
評估是一回事。近來在教育學的文獻中,
17:12
in the literature文學 these days, in the educational教育性 literature文學,
389
1020078
2910
有許多關於做評估的,
17:14
but evaluation評測 really amounts to feedback反饋 and it amounts
390
1022988
2958
但評估其實意味著回饋,
17:17
to an opportunity機會 for trial審訊 and error錯誤.
391
1025946
2154
意味著給試驗和犯錯提供機會。
17:20
It amounts to a chance機會 to work over a longer period of time
392
1028100
4494
它意味著在更長的期間裡,
17:24
with this kind of feedback反饋.
393
1032594
1910
利用這些回饋的機會。
17:26
That's different不同 than weeding除草, and usually平時, I have to tell you,
394
1034504
2938
這跟淘汰是不同的。我要告訴大家,通常
17:29
when people talk about evaluation評測, evaluating評估 students學生們,
395
1037442
2726
當人們談到評估,評估學生,
17:32
evaluating評估 teachers教師, evaluating評估 schools學校,
396
1040168
2787
評估老師,評估學校,
17:34
evaluating評估 programs程式, that they're really talking about weeding除草.
397
1042955
4161
評估專案,他們真正的意思是淘汰。
17:39
And that's a bad thing, because then you will get what you select選擇 for,
398
1047116
4210
這就不是什麼好事了。
因為你會得到你想選擇的,
17:43
which哪一個 is what we've我們已經 gotten得到 so far.
399
1051326
1958
這也是我們的現狀。
17:45
So I'd say what we need is a test測試 that says, "What is x?"
400
1053284
3441
我認為我們需要這樣的測驗,問「什麼是X」
17:48
and the answers答案 are "I don't know, because no one does,"
401
1056725
3092
回答則是「我不知道,因為沒人知道。」
17:51
or "What's the question?" Even better.
402
1059817
1741
或「問題是什麼?」這樣更好。
17:53
Or, "You know what, I'll look it up, I'll ask someone有人,
403
1061558
2390
或「知道嗎?我會查一下,我會去問問別人。
17:55
I'll phone電話 someone有人. I'll find out."
404
1063964
2700
我會打幾個電話。我會找出答案。」
17:58
Because that's what we want people to do,
405
1066664
1550
而這才是我們希望人們去做的,
18:00
and that's how you evaluate評估 them.
406
1068214
1371
這才是做評估的方式。
18:01
And maybe for the advanced高級 placement放置 classes,
407
1069585
1943
對一些優等生班,
18:03
it could be, "Here's這裡的 the answer回答. What's the next下一個 question?"
408
1071528
3714
答案可能是:「這是答案,下一個問題是什麼?」
18:07
That's the one I like in particular特定.
409
1075242
1511
這是我特別喜歡的一個問題。
18:08
So let me end結束 with a quote引用 from William威廉 Butler男管家 Yeats葉芝,
410
1076753
2177
請讓我以葉慈的話來結束我的演講。
18:10
who said "Education教育 is not about filling填充 buckets水桶;
411
1078930
3167
他說:「教育並不是注滿水桶,
18:14
it is lighting燈光 fires火災."
412
1082097
2153
而是點燃火種。」
18:16
So I'd say, let's get out the matches火柴.
413
1084250
3875
讓我們拿出火柴吧!
18:20
Thank you.
414
1088125
1208
謝謝大家。
18:21
(Applause掌聲)
415
1089333
3227
(掌聲)
18:24
Thank you. (Applause掌聲)
416
1092560
3816
謝謝。(掌聲)
Translated by Peggy Tsai
Reviewed by Karen SONG

▲Back to top

ABOUT THE SPEAKER
Stuart Firestein - Neuroscientist
Stuart Firestein teaches students and “citizen scientists” that ignorance is far more important to discovery than knowledge.

Why you should listen

You’d think that a scientist who studies how the human brain receives and perceives information would be inherently interested in what we know. But Stuart Firestein says he’s far more intrigued by what we don’t. “Answers create questions,” he says. “We may commonly think that we begin with ignorance and we gain knowledge [but] the more critical step in the process is the reverse of that.”

Firestein, who chairs the biological sciences department at Columbia University, teaches a course about how ignorance drives science. In it -- and in his 2012 book on the topic -- he challenges the idea that knowledge and the accumulation of data create certainty. Facts are fleeting, he says; their real purpose is to lead us to ask better questions.

More profile about the speaker
Stuart Firestein | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee