ABOUT THE SPEAKERS
Hans Rosling - Global health expert; data visionary
In Hans Rosling’s hands, data sings. Global trends in health and economics come to vivid life. And the big picture of global development—with some surprisingly good news—snaps into sharp focus.

Why you should listen

Even the most worldly and well-traveled among us have had their perspectives shifted by Hans Rosling. A professor of global health at Sweden's Karolinska Institute, his work focused on dispelling common myths about the so-called developing world, which (as he pointed out) is no longer worlds away from the West. In fact, most of the Third World is on the same trajectory toward health and prosperity, and many countries are moving twice as fast as the west did.

What set Rosling apart wasn't just his apt observations of broad social and economic trends, but the stunning way he presented them. Guaranteed: You've never seen data presented like this. A presentation that tracks global health and poverty trends should be, in a word: boring. But in Rosling's hands, data sings. Trends come to life. And the big picture — usually hazy at best — snaps into sharp focus.

Rosling's presentations were grounded in solid statistics (often drawn from United Nations and World Bank data), illustrated by the visualization software he developed. The animations transform development statistics into moving bubbles and flowing curves that make global trends clear, intuitive and even playful. During his legendary presentations, Rosling took this one step farther, narrating the animations with a sportscaster's flair.

Rosling developed the breakthrough software behind his visualizations through his nonprofit Gapminder, founded with his son and daughter-in-law. The free software — which can be loaded with any data — was purchased by Google in March 2007. (Rosling met the Google founders at TED.)

Rosling began his wide-ranging career as a physician, spending many years in rural Africa tracking a rare paralytic disease (which he named konzo) and discovering its cause: hunger and badly processed cassava. He co-founded Médecins sans Frontièrs (Doctors without Borders) Sweden, wrote a textbook on global health, and as a professor at the Karolinska Institut in Stockholm initiated key international research collaborations. He's also personally argued with many heads of state, including Fidel Castro.

Hans Rosling passed away in February 2017. He is greatly missed.


More profile about the speaker
Hans Rosling | Speaker | TED.com
Ola Rosling - Director of the Gapminder Foundation
Ola Rosling is the director and co-founder of the Gapminder Foundation. Previously, he was the Google Public Data product manager.

Why you should listen
To fight devastating ignorance, we have to be more systematic about spreading facts that matter. In this talk with Hans Rosling, Ola teaches 4 ways to quickly learn more about the world of facts.
More profile about the speaker
Ola Rosling | Speaker | TED.com
TEDSalon Berlin 2014

Hans and Ola Rosling: How not to be ignorant about the world

漢斯•羅斯林和奧拉•羅斯林: 如何更瞭解我們的世界

Filmed:
5,377,171 views

你有多瞭解世界?漢斯‧羅斯林以他有名的世界人口、健康與收入狀況的資料圖,顯示出從統計上來看,你很有可能在認為明白的事情上搞錯了。和他的聽眾們一起玩玩小測驗,然後,從漢斯的兒子奧拉那裡學習如何快速擺脫無知的四種方法。
- Global health expert; data visionary
In Hans Rosling’s hands, data sings. Global trends in health and economics come to vivid life. And the big picture of global development—with some surprisingly good news—snaps into sharp focus. Full bio - Director of the Gapminder Foundation
Ola Rosling is the director and co-founder of the Gapminder Foundation. Previously, he was the Google Public Data product manager. Full bio

Double-click the English transcript below to play the video.

00:12
Hans漢斯 Rosling羅斯林: I'm going to ask you
0
663
2403
我要問大家
00:15
three multiple choice選擇 questions問題.
1
3066
1325
三個選擇題。
00:16
Use this device設備. Use this device設備 to answer回答.
2
4391
3731
用這個答題裝置來回答。
00:20
The first question is, how did the number
3
8122
2555
第一個問題是,
每年因為自然災害
00:22
of deaths死亡 per year
4
10677
2121
而造成的死亡人數
00:24
from natural自然 disaster災害,
5
12798
1292
00:26
how did that change更改 during the last century世紀?
6
14090
2601
在過去這個世紀中出現怎樣的變化?
00:28
Did it more than double,
7
16691
1379
是翻倍了,
00:30
did it remain about the same相同 in the world世界 as a whole整個,
8
18070
2782
還是總體上維持著一致的水準,
00:32
or did it decrease減少 to less than half?
9
20852
2374
抑或是減少了一半以上?
00:35
Please answer回答 A, B or C.
10
23226
2404
請回答 A,B,或 C。
00:37
I see lots of answers答案. This is much
faster更快 than I do it at universities高校.
11
25630
4100
很多人作答了。
這比在大學裡快多了。
00:41
They are so slow. They keep
thinking思維, thinking思維, thinking思維.
12
29730
3157
大學生就是想太多,答題很慢。
00:44
Oh, very, very good.
13
32887
2022
喔,非常好。
00:46
And we go to the next下一個 question.
14
34909
1863
我們接著看下一題。
00:48
So how long did women婦女 30 years年份 old
15
36772
2659
在全球範圍內,年齡 30 歲的女性
00:51
in the world世界 go to school學校:
16
39431
2096
平均就學的時間有多長?
00:53
seven years年份, five years年份 or three years年份?
17
41527
2034
7 年,5 年,還是 3 年?
00:55
A, B or C? Please answer回答.
18
43561
6503
A,B 或 C?請作答。
01:02
And we go to the next下一個 question.
19
50064
2038
接下來的問題是:
01:04
In the last 20 years年份, how did the percentage百分比
20
52102
3921
最近 20 年,
世界上生活在赤貧中的人口比例
01:08
of people in the world世界
21
56023
1827
01:09
who live生活 in extreme極端 poverty貧窮 change更改?
22
57850
2217
有怎樣的變化?
01:12
Extreme極端 poverty貧窮 — not having
enough足夠 food餐飲 for the day.
23
60067
2561
赤貧就是每天無法獲得足夠食物。
01:14
Did it almost幾乎 double,
24
62628
2061
是幾乎翻倍,
01:16
did it remain more or less the same相同,
25
64689
1549
還是大致維持一致水準,
01:18
or did it halve對分?
26
66238
1513
抑或是減少了一半?
01:19
A, B or C?
27
67751
4020
A,B 或 C?
01:23
Now, answers答案.
28
71771
3156
現在,公佈答案。
01:26
You see,
29
74927
1094
你們看,
01:28
deaths死亡 from natural自然 disasters災害 in the world世界,
30
76021
1725
每年因自然災害致死的人數,
01:29
you can see it from this graph圖形 here,
31
77746
1922
你們可從這裡的圖表得知,
01:31
from 1900 to 2000.
32
79668
2780
世界上自 1900 年至 2000 年的數據。
01:34
In 1900, there was about half a million百萬 people
33
82448
3255
在 1900 年,大約有 50 萬人
01:37
who died死亡 every一切 year from natural自然 disasters災害:
34
85703
2087
因為自然災害而死亡,
01:39
floods洪水, earthquakes地震, volcanic火山
eruption噴發, whatever隨你, droughts乾旱.
35
87790
5097
洪水、地震、火山爆發、旱災等。
01:44
And then, how did that change更改?
36
92887
2720
而之後這個數據是如何變化呢?
01:47
GapminderGapminder asked the public上市 in Sweden瑞典.
37
95607
3486
Gapminder 機構在瑞典進行調查。
01:51
This is how they answered回答.
38
99093
1859
他們是這樣回答的,
01:52
The Swedish瑞典 public上市 answered回答 like this:
39
100952
1929
瑞典民眾這樣回答的:
01:54
Fifty五十 percent百分 thought it had doubled翻倍,
40
102881
1472
半數的人認為倍增,
01:56
38 percent百分 said it's more or less the same相同,
41
104353
2205
38% 的人認為不變,
01:58
12 said it had halved減半.
42
106558
2098
12% 的人認為減半。
02:00
This is the best最好 data數據 from the disaster災害 researchers研究人員,
43
108656
2652
這是從災害研究者得到的最佳資料,
02:03
and it goes up and down,
44
111308
2966
顯示出數字升高又降低,
02:06
and it goes to the Second第二 World世界 War戰爭,
45
114274
2552
然後是第二次世界大戰,
02:08
and after that it starts啟動 to fall秋季 and it keeps保持 falling落下
46
116826
3400
戰後又開始持續降低,
02:12
and it's down to much less than half.
47
120226
1846
並遠低於一半。
02:14
The world世界 has been much, much more capable
48
122072
2608
在數十年之間,這世界越來越能夠
02:16
as the decades幾十年 go by
49
124680
1614
02:18
to protect保護 people from this, you know.
50
126294
2391
保護人們免於自然災害致死。
02:20
So only 12 percent百分 of the Swedes瑞典人 know this.
51
128685
2866
所以,僅 12% 的瑞典民眾答對。
02:23
So I went to the zoo動物園 and I asked the chimps黑猩猩.
52
131551
2491
那我就去動物園問黑猩猩。
02:26
(Laughter笑聲) (Applause掌聲)
53
134042
9846
(笑聲)(掌聲)
02:39
The chimps黑猩猩 don't watch the evening晚間 news新聞,
54
147458
3799
黑猩猩不看晚間新聞,
02:43
so the chimps黑猩猩,
55
151257
1458
所以,黑猩猩是亂猜的。
02:44
they choose選擇 by random隨機, so the
Swedes瑞典人 answer回答 worse更差 than random隨機.
56
152715
3432
也就是說,瑞典人回答得
比亂猜還糟糕。
02:48
Now how did you do?
57
156147
2939
現在我們來看各位答得如何?
02:51
That's you.
58
159086
2962
這就是各位回答的情況。
02:54
You were beaten毆打 by the chimps黑猩猩.
59
162048
2225
黑猩猩還打敗你們了吧。
02:56
(Laughter笑聲)
60
164273
1790
(笑聲)
02:58
But it was close.
61
166063
2975
但是很接近了。
03:01
You were three times better than the Swedes瑞典人,
62
169038
4021
各位比瑞典人強三倍,
03:05
but that's not enough足夠.
63
173059
1243
但是那還不夠。
03:06
You shouldn't不能 compare比較 yourself你自己 to Swedes瑞典人.
64
174302
2582
你們不該和瑞典人相提並論。
03:08
You must必須 have higher更高 ambitions野心 in the world世界.
65
176884
3531
各位在世間應該要有更高的抱負。
03:12
Let's look at the next下一個 answer回答 here: women婦女 in school學校.
66
180415
3408
來看看下一題的答案:女性就學。
03:15
Here, you can see men男人 went eight years年份.
67
183823
2016
各位在此可以看到,
男性平均就學時長為8年。
03:17
How long did women婦女 go to school學校?
68
185839
1781
那女性平均就學時間呢?
03:19
Well, we asked the Swedes瑞典人 like this,
69
187620
2749
瑞典人是這麼回答的,
03:22
and that gives you a hint暗示, doesn't it?
70
190369
2217
而那給了各位一點提示,不是嗎?
03:24
The right answer回答 is probably大概 the one
71
192586
2362
正確的回答大概是這個,
03:26
the fewest最少 Swedes瑞典人 picked採摘的, isn't it?
72
194948
2735
就是最少瑞典人選的,對吧?
03:29
(Laughter笑聲)
73
197683
1503
(笑聲)
03:31
Let's see, let's see. Here we come.
74
199186
2438
我們來看看吧。答案來囉。
03:33
Yes, yes, yes, women婦女 have almost幾乎 caught抓住 up.
75
201624
4401
沒錯,女性就學時間幾乎趕上男性。
03:38
This is the U.S. public上市.
76
206025
3413
這是美國大眾對這個問題的回答。
03:41
And this is you. Here you come.
77
209438
3875
然後這是各位的。
03:45
Ooh.
78
213313
4012
噢......
03:49
Well, congratulations祝賀, you're
twice兩次 as good as the Swedes瑞典人,
79
217325
1829
恭喜各位,你們的正確率
比瑞典人好上兩倍。
03:51
but you don't need me —
80
219154
2420
但你們不需要我來......
03:53
So how come? I think it's like this,
81
221574
4814
怎麼會這樣?我猜大概是因為
03:58
that everyone大家 is aware知道的 that there are countries國家
82
226388
2722
大家都知道有些國家、
04:01
and there are areas
83
229110
1104
有些地方,
04:02
where girls女孩 have great difficulties困難.
84
230214
2138
女孩子面臨著很艱鉅的阻礙。
04:04
They are stopped停止 when they go to school學校,
85
232352
1908
她們沒辦法上學,
04:06
and it's disgusting討厭.
86
234260
2065
而這讓人覺得可惡。
04:08
But in the majority多數 of the world世界,
87
236325
1897
而世上大多數人所居住的地方,
04:10
where most people in the world世界 live生活,
88
238222
1687
04:11
most countries國家, girls女孩 today今天 go to school學校
89
239909
2982
在大多數國家,
女孩子們現在去上學的時間,
04:14
as long as boys男孩, more or less.
90
242891
2539
和男孩們相比或多或少是一樣長的。
04:17
That doesn't mean that gender性別 equity公平 is achieved實現,
91
245430
2059
但那並不表示性別平等已經實現,
04:19
not at all.
92
247489
2084
完全不是。
04:21
They still are confined受限 to terrible可怕, terrible可怕 limitations限制,
93
249573
4541
女性仍被難以忍受的限制束縛著,
04:26
but schooling教育 is there in the world世界 today今天.
94
254114
2232
但是,當今世界中,
就學並非遙不可及。
04:28
Now, we miss小姐 the majority多數.
95
256346
4095
現在,我們遺漏了大多數情形。
04:32
When you answer回答, you answer回答
according根據 to the worst最差 places地方,
96
260441
3323
各位回答時以最糟糕的情況為依據,
04:35
and there you are right, but you miss小姐 the majority多數.
97
263764
2856
那並沒有什麼不對,
但你卻遺漏了大多數情形。
04:38
What about poverty貧窮?
98
266620
1476
那關於貧窮的問題呢?
04:40
Well, it's very clear明確 that poverty貧窮 here
99
268096
2903
這裡清楚地顯示,貧窮的情況
04:42
was almost幾乎 halved減半,
100
270999
1775
幾乎已經減半,
04:44
and in U.S., when we asked the public上市,
101
272774
1679
而在美國,當我們詢問大眾時,
04:46
only five percent百分 got it right.
102
274453
3984
只有 5% 的人答對。
04:50
And you?
103
278437
2869
而各位呢?
04:53
Ah, you almost幾乎 made製作 it to the chimps黑猩猩.
104
281306
3858
啊,各位幾乎和黑猩猩一樣優秀。
04:57
(Laughter笑聲) (Applause掌聲)
105
285164
2361
(笑聲)(掌聲)
04:59
That little, just a few少數 of you!
106
287525
5617
就差那麼一點點啊!
05:05
There must必須 be preconceived先入為主 ideas思路, you know.
107
293142
3679
先入為主的想法必定存在。
05:08
And many許多 in the rich豐富 countries國家,
108
296821
1794
而在富裕國家中的多數人,
05:10
they think that oh, we can never end結束 extreme極端 poverty貧窮.
109
298615
3660
他們認為我們永遠無法終結赤貧。
05:14
Of course課程 they think so,
110
302275
1653
他們當然這麼想,
05:15
because they don't even know what has happened發生.
111
303928
2964
因為他們不瞭解實際的情況。
05:18
The first thing to think about the future未來
112
306892
2350
思考未來的首要之務,
05:21
is to know about the present當下.
113
309242
2021
是對於現況的瞭解。
05:23
These questions問題 were a few少數 of the first ones那些
114
311263
3052
這些是“無知項目”的前導階段中
最開始提出的問題裡的一小部分,
05:26
in the pilot飛行員 phase of the Ignorance無知 Project項目
115
314315
3385
05:29
in GapminderGapminder Foundation基礎 that we run,
116
317700
3020
這個項目由我們所營運的
Gapminder 基金會發起,
05:32
and it was started開始, this project項目, last year
117
320720
2796
而且是在去年發起的,
05:35
by my boss老闆, and also my son兒子, Ola奧拉 Rosling羅斯林. (Laughter笑聲)
118
323516
4406
由 Ola Rosling,我的老闆,
也是我兒子。
(笑聲)
他是創辦人之一及董事,
05:39
He's cofounder聯合創始人 and director導向器,
119
327922
1582
05:41
and he wanted, Ola奧拉 told me
120
329504
1544
而他告訴我,他要的是
05:43
we have to be more systematic系統的
121
331048
2560
我們應該更有系統地
05:45
when we fight鬥爭 devastating破壞性的 ignorance無知.
122
333608
1873
對抗災難性的無知。
05:47
So already已經 the pilots飛行員 reveal揭示 this,
123
335481
2218
所以,前導的研究已經顯示出,
05:49
that so many許多 in the public上市 score得分了 worse更差 than random隨機,
124
337699
3210
一般大眾正確回答的比例低於亂猜,
05:52
so we have to think about preconceived先入為主 ideas思路,
125
340909
2083
因此,我們應當反思先入為主的觀念。
05:54
and one of the main主要 preconceived先入為主 ideas思路
126
342992
2028
而其中最主要的觀念之一,
05:57
is about world世界 income收入 distribution分配.
127
345020
1869
是有關世界上的收入分配。
05:58
Look here. This is how it was in 1975.
128
346889
3831
這是 1975 年時候的狀況。
06:02
It's the number of people on each income收入,
129
350720
3219
這是每人每日所得的人數統計數據。
06:05
from one dollar美元 a day —
130
353939
2891
從每天一美元......
06:08
(Applause掌聲)
131
356830
2451
(掌聲)
06:11
See, there was one hump駝峰 here,
132
359281
2075
看到了嗎,這裡有個峰值,
06:13
around one dollar美元 a day,
133
361356
1898
大約是每日所得一美元,
06:15
and then there was one hump駝峰 here
134
363254
1456
然後這裡有另一個峰值,
06:16
somewhere某處 between之間 10 and 100 dollars美元.
135
364710
2015
大約介於每日所得
10 到 100 美元。
06:18
The world世界 was two groups.
136
366725
1746
這世界上有兩個主要族群,
06:20
It was a camel駱駝 world世界, like a camel駱駝 with two humps,
137
368471
3610
就像一只雙峰駱駝。
06:24
the poor較差的 ones那些 and the rich豐富 ones那些,
138
372081
2012
窮的一群,有錢的一群,
06:26
and there were fewer in between之間.
139
374093
1564
少數介於兩者之間。
06:27
But look how this has changed:
140
375657
2169
但看看這樣的情況是怎麼變化的。
06:29
As I go forward前鋒, what has changed,
141
377826
1826
隨著時光流轉,產生的變化是:
06:31
the world世界 population人口 has grown長大的,
142
379652
1656
世界的人口增加,
06:33
and the humps start開始 to merge合併.
143
381308
2768
而兩個峰值開始合併。
06:36
The lower降低 humps merged合併的 with the upper hump駝峰,
144
384076
2770
低處的駝峰與高處的合而為一,
06:38
and the camel駱駝 dies and we have a dromedary單峰駝 world世界
145
386846
3127
而世界從雙峰駱駝變成了
06:41
with one hump駝峰 only.
146
389973
2255
只有單峰的駱駝。
06:44
The percent百分 in poverty貧窮 has decreased下降.
147
392228
1924
貧窮人口的比例減少,
06:46
Still it's appalling駭人聽聞的
148
394152
1577
但依舊令人覺得糟糕的,
06:47
that so many許多 remain in extreme極端 poverty貧窮.
149
395729
3201
是許多人仍有這麼多人處於赤貧。
06:50
We still have this group, almost幾乎 a billion十億, over there,
150
398930
3023
我們大約仍有10億左右赤貧人口,
06:53
but that can be ended結束 now.
151
401953
3049
但那現在可以被終結了。
06:57
The challenge挑戰 we have now
152
405002
2303
我們目前的挑戰在於,
06:59
is to get away from that,
understand理解 where the majority多數 is,
153
407305
2808
擺脫赤貧,搞清楚大多數人的狀況,
07:02
and that is very clearly明確地 shown顯示 in this question.
154
410113
3244
而那已經很清楚地顯現在問題中。
07:05
We asked, what is the percentage百分比 of the world's世界
155
413357
2233
我們要問,世界上多少比例的一歲幼童
07:07
one-year-old一歲 children孩子 who have got those
156
415590
1654
接種了像麻疹之類的基本疫苗,
07:09
basic基本 vaccines疫苗 against反對 measles麻疹 and other things
157
417244
2610
07:11
that we have had for many許多 years年份:
158
419854
1493
在我們擁有疫苗這麼多年之後:
07:13
20, 50 or 80 percent百分?
159
421347
2022
20%,50% 或是 80% ?
07:15
Now, this is what the U.S.
public上市 and the Swedish瑞典 answered回答.
160
423369
4073
這是美國和瑞典大眾的回答。
07:19
Look at the Swedish瑞典 result結果:
161
427442
876
先看瑞典人的回答,
07:20
you know what the right answer回答 is.
162
428318
2062
這樣你就知道哪個答案才是對的。
07:22
(Laughter笑聲)
163
430380
3673
(笑聲)
07:26
Who the heck赫克 is a professor教授 of
global全球 health健康 in that country國家?
164
434053
3503
到底那個國家的全球公衛教授是誰呀?
07:29
Well, it's me. It's me.
165
437556
1672
欸,是我,是我。
07:31
(Laughter笑聲)
166
439228
1962
(笑聲)
07:33
It's very difficult, this. It's very difficult.
167
441190
2482
這真是非常難搞。
07:35
(Applause掌聲)
168
443672
3098
(掌聲)
07:38
However然而, Ola's奧拉的 approach途徑
169
446770
3714
不過,Ola 用來量測
我們所知多少的方法
07:42
to really measure測量 what we know made製作 headlines新聞頭條,
170
450484
3158
已經成為新聞頭條。
07:45
and CNNCNN published發表 these results結果 on their web捲筒紙
171
453642
3063
CNN 在網路上公布這些結果,
07:48
and they had the questions問題 there, millions百萬 answered回答,
172
456705
2147
還有問題,並有幾百萬人回答,
07:50
and I think there were about 2,000 comments註釋,
173
458852
3482
還有大約 2000 條評論,
07:54
and this was one of the comments註釋.
174
462334
2313
而這是其中一則評論。
07:56
"I bet賭注 no member會員 of the media媒體
passed通過 the test測試," he said.
175
464647
3544
他說,「我敢賭沒有一家媒體
答對了這些問題。」
08:00
So Ola奧拉 told me, "Take these devices設備.
176
468191
2639
所以 Ola 告訴我,
「帶著這些答題裝置,
08:02
You are invited邀請 to media媒體 conferences會議.
177
470830
1705
你獲邀去參加記者會。
08:04
Give it to them and measure測量 what the media媒體 know."
178
472535
2277
把裝置發給媒體,
並測測他們所知多少。」
08:06
And ladies女士們 and gentlemen紳士,
179
474812
1924
各位女士先生們,
08:08
for the first time, the informal非正式的 results結果
180
476736
2677
在此首度揭露,
我們所得到非正式的結果,
08:11
from a conference會議 with U.S. media媒體.
181
479413
3925
在一次美國媒體記者會所蒐集。
08:15
And then, lately最近, from the European歐洲的 Union聯盟 media媒體.
182
483338
4886
然後,最近在歐盟媒體記者會
所獲得的結果。
08:20
(Laughter笑聲)
183
488224
1268
(笑聲)
08:21
You see, the problem問題 is not that people
184
489492
2205
你看,問題不在於人們
08:23
don't read and listen to the media媒體.
185
491697
1948
不去閱聽媒體。
08:25
The problem問題 is that the
media媒體 doesn't know themselves他們自己.
186
493645
4219
問題在於媒體自己都不瞭解。
08:29
What shall we do about this, Ola奧拉?
187
497864
1581
Ola ,我們該怎麼做呢?
08:31
Do we have any ideas思路?
188
499445
1498
我們有什麼點子嗎?
08:32
(Applause掌聲)
189
500943
11094
(掌聲)
08:44
Ola奧拉 Rosling羅斯林: Yes, I have an idea理念, but first,
190
512037
3709
沒錯,我有個點子。但首先,
08:47
I'm so sorry that you were beaten毆打 by the chimps黑猩猩.
191
515746
3815
我對各位輸給黑猩猩感到遺憾。
08:51
Fortunately幸好, I will be able能夠 to comfort安慰 you
192
519561
2633
好在我有辦法安慰各位,
08:54
by showing展示 why it was not your fault故障, actually其實.
193
522194
4559
闡明這實際上不是各位的錯。
08:58
Then, I will equip裝備 you with some tricks技巧
194
526753
2022
然後我會為各位提供一些小技巧,
09:00
for beating跳動 the chimps黑猩猩 in the future未來.
195
528775
2090
讓各位未來能贏過黑猩猩。
09:02
That's basically基本上 what I will do.
196
530865
2214
那基本上是我接下來將要做的。
09:05
But first, let's look at why are we so ignorant愚昧,
197
533079
2203
不過,首先,
來看看我們為何如此無知,
09:07
and it all starts啟動 in this place地點.
198
535282
2607
而一切都開始於此處。
09:09
It's Hudiksvall胡迪克斯瓦爾. It's a city in northern北方 Sweden瑞典.
199
537889
3690
這是 Hudiksvall,
在北瑞典的一個城市。
09:13
It's a neighborhood鄰里 where I grew成長 up,
200
541579
3797
這是我長大的地方,
09:17
and it's a neighborhood鄰里 with a large problem問題.
201
545376
3601
而且這地方有個大問題,
09:20
Actually其實, it has exactly究竟 the same相同 problem問題
202
548977
1986
實際上,相同的問題
09:22
which哪一個 existed存在 in all the neighborhoods社區
203
550963
2609
也存在各位生長的故鄉,
09:25
where you grew成長 up as well.
204
553572
1348
09:26
It was not representative代表. Okay?
205
554920
2662
這不具代表性。好嗎?
09:29
It gave me a very biased view視圖
206
557582
2443
它提供我一個非常偏差的觀點,
09:32
of how life is on this planet行星.
207
560025
2348
來理解這星球上生活的面貌。
09:34
So this is the first piece of the ignorance無知 puzzle難題.
208
562373
2992
所以,這是無知拼圖的第一塊。
09:37
We have a personal個人 bias偏壓.
209
565365
1272
我們有種個人的偏見。
09:38
We have all different不同 experiences經驗
210
566637
2113
我們有各式各樣的經驗,
09:40
from communities社區 and people we meet遇到,
211
568750
1640
從我們接觸的社群與人們處獲得,
09:42
and on top最佳 of this, we start開始 school學校,
212
570390
2987
在那基礎上,我們還上學,
09:45
and we add the next下一個 problem問題.
213
573377
1921
這就帶來了下面的問題。
09:47
Well, I like schools學校,
214
575298
1144
我喜歡學校,
09:48
but teachers教師 tend趨向 to teach outdated過時的 worldviews世界觀,
215
576442
5087
但老師們傾向於傳授過時的世界觀,
09:53
because they learned學到了 something
when they went to school學校,
216
581529
2601
因為,那是他們以前求學時學到的,
09:56
and now they describe描述 this world世界 to the students學生們
217
584130
2553
而現在,他們對學生描述這世界
09:58
without any bad intentions意圖,
218
586683
2206
他們並沒有不良的意圖,
10:00
and those books圖書, of course課程, that are printed印刷的
219
588889
2229
當然,那些印出來的書籍
10:03
are outdated過時的 in a world世界 that changes變化.
220
591118
2931
也已經跟不上世界的變化。
10:06
And there is really no practice實踐
221
594049
1247
而且,沒有一種方法
真正能夠維持教材的更新。
10:07
to keep the teaching教學 material材料 up to date日期.
222
595296
3249
10:10
So that's what we are focusing調焦 on.
223
598545
1984
於是,這成為我們關注的焦點。
10:12
So we have these outdated過時的 facts事實
224
600529
1569
當我們把這些過時的事實,
10:14
added添加 on top最佳 of our personal個人 bias偏壓.
225
602098
2934
傾注在個人的偏見上。
10:17
What happens發生 next下一個 is news新聞, okay?
226
605032
2476
接下來就是新聞了,好嗎?
10:19
An excellent優秀 journalist記者 knows知道 how to pick
227
607508
2517
一個出色的記者知道如何挑選
10:22
the story故事 that will make headlines新聞頭條,
228
610025
2406
造就頭條新聞的故事,
10:24
and people will read it because it's sensational轟動的.
229
612431
2599
且人們會因為夠腥羶而去閱讀它。
10:27
Unusual異常 events事件 are more interesting有趣, no?
230
615030
3965
奇聞才比較有趣,不是嗎?
10:30
And they are exaggerated誇張的,
231
618995
1715
而它們被誇大,
10:32
and especially特別 things we're afraid害怕 of.
232
620710
3429
特別是我們會懼怕的事情。
10:36
A shark鯊魚 attack攻擊 on a Swedish瑞典 person
233
624139
2428
一個瑞典人被鯊魚攻擊,
10:38
will get headlines新聞頭條 for weeks in Sweden瑞典.
234
626567
3715
肯定會在瑞典成為數週的頭條。
10:42
So these three skewed偏斜 sources來源 of information信息
235
630282
3719
所以,這三種歪曲的資訊來源
10:46
were really hard to get away from.
236
634001
3275
我們實在難以擺脫。
10:49
They kind of bombard轟擊 us
237
637276
1631
他們就像在對我們進行疲勞轟炸,
10:50
and equip裝備 our mind心神 with a lot of strange奇怪 ideas思路,
238
638907
3806
並讓我們充滿許多奇怪的想法,
10:54
and on top最佳 of it we put the very thing
239
642713
2737
我們在那之上放了人類的特有功能,
10:57
that makes品牌 us humans人類, our human人的 intuition直覺.
240
645450
5266
我們人類的直覺。
11:02
It was good in evolution演化.
241
650716
2176
這在物種進化中是件好事。
11:04
It helped幫助 us generalize概括
242
652892
1258
幫助我們歸納
11:06
and jump to conclusions結論 very, very fast快速.
243
654150
2258
並用很快的速度得到結論。
11:08
It helped幫助 us exaggerate誇大 what we were afraid害怕 of,
244
656408
3968
那讓我們誇大我們害怕的,
11:12
and we seek尋求 causality因果關係 where there is none沒有,
245
660376
3284
並讓我們無中生有地尋找出因果關係,
11:15
and we then get an illusion錯覺 of confidence置信度
246
663660
4937
然後得到一種自信的假像,
11:20
where we believe that we are the best最好 car汽車 drivers司機,
247
668597
3006
在假像中相信自己是最佳駕駛員,
11:23
above以上 the average平均.
248
671603
1740
比其他人都好。
11:25
Everybody每個人 answered回答 that question,
249
673343
1362
每個人對那個問題的回答都是,
11:26
"Yeah, I drive駕駛 cars汽車 better."
250
674705
1269
「沒錯,我的駕駛技術比較好。」
11:27
Okay, this was good evolutionarily進化,
251
675974
2297
好吧,這是正向進化的,
11:30
but now when it comes to the worldview世界觀,
252
678271
1833
但當這變成世界觀,
11:32
it is the exact精確 reason原因 why it's upside上邊 down.
253
680104
2862
就正好成為混亂的根源。
11:34
The trends趨勢 that are increasing增加 are instead代替 falling落下,
254
682966
2923
本來以為是增加的趨勢
反而是在下降,
11:37
and the other way around,
255
685889
1582
有些則恰好相反。
11:39
and in this case案件, the chimps黑猩猩
use our intuition直覺 against反對 us,
256
687471
4000
而那樣的情況下,黑猩猩
用我們的直覺打敗了我們,
11:43
and it becomes our weakness弱點 instead代替 of our strength強度.
257
691471
3440
而直覺變成我們的劣勢而不是優勢。
11:46
It was supposed應該 to be our strength強度, wasn't it?
258
694911
2483
那本應是我們的優勢,不是嗎?
11:49
So how do we solve解決 such這樣 problems問題?
259
697394
2372
所以,我們該如何解決這樣的問題?
11:51
First, we need to measure測量 it,
260
699766
1675
首先,我們必須要衡量問題,
11:53
and then we need to cure治愈 it.
261
701441
1402
然後我們需要加以解決。
11:54
So by measuring測量 it we can understand理解
262
702843
2532
藉由衡量問題,我們可以理解
11:57
what is the pattern模式 of ignorance無知.
263
705375
2324
無知的模式是怎樣的。
11:59
We started開始 the pilot飛行員 last year,
264
707699
1536
我們去年開始前導計畫,
12:01
and now we're pretty漂亮 sure that we will encounter遭遇
265
709235
2469
而現在我們很確定會遭遇
12:03
a lot of ignorance無知 across橫過 the whole整個 world世界,
266
711704
3581
世界上許多無知的情況,
12:07
and the idea理念 is really to
267
715285
3613
而方法就是真正地
12:10
scale規模 it up to all domains
268
718898
1977
將規模擴及所有面向
12:12
or dimensions尺寸 of global全球 development發展,
269
720875
2548
或各種全球發展的角度,
12:15
such這樣 as climate氣候, endangered瀕危 species種類, human人的 rights權利,
270
723423
4082
諸如氣候、瀕危物種、人權、
12:19
gender性別 equality平等, energy能源, finance金融.
271
727505
3210
性別平等、能源、金融等等。
12:22
All different不同 sectors行業 have facts事實,
272
730715
2733
不同產業皆有其真相,
12:25
and there are organizations組織 trying to spread傳播
273
733448
1596
而不同的組織正試著散播
12:27
awareness意識 about these facts事實.
274
735044
1926
對於這些真相的認知。
12:28
So I've started開始 actually其實 contacting聯繫 some of them,
275
736970
3704
因此,我開始聯繫一些組織,
12:32
like WWFWWF and Amnesty大赦 International國際 and UNICEF聯合國兒童基金會,
276
740674
3341
如世界自然基金會,國際特赦組織,
和聯合國兒童基金會,
12:36
and asking them, what are your favorite喜愛 facts事實
277
744015
2598
並問他們,「你們最關注的真相,
12:38
which哪一個 you think the public上市 doesn't know?
278
746613
1893
你們認為大眾所不知道的是什麼?」
12:40
Okay, I gather收集 those facts事實.
279
748506
1578
我收集了那些真相。
12:42
Imagine想像 a long list名單 with, say, 250 facts事實.
280
750084
3535
想像一個長長的清單,
就說有 250 個好了。
12:45
And then we poll輪詢 the public上市
281
753619
1299
然後我們拿來測試一般民眾,
12:46
and see where they score得分了 worst最差.
282
754918
1937
看看哪個部分分數最低。
12:48
So we get a shorter list名單
283
756855
1346
於是我們得到一個比較短的清單,
12:50
with the terrible可怕 results結果,
284
758201
1056
上面列舉了比較差的結果,
12:51
like some few少數 examples例子 from Hans漢斯,
285
759257
2549
就像 Hans 所舉的幾個例子,
12:53
and we have no problem問題 finding發現 these kinds
286
761806
1917
我們可以輕易地就能找到
這樣糟糕的結果。
12:55
of terrible可怕 results結果.
287
763723
1215
12:56
Okay, this little shortlist名單, what
are we going to do with it?
288
764938
2845
好,我們該怎麼處理
這篩選出來的清單呢?
12:59
Well, we turn it into a knowledge知識 certificate證書,
289
767783
4126
我們把它轉化成“知識證書”,
13:03
a global全球 knowledge知識 certificate證書,
290
771909
1862
一份“全球知識證書”,
13:05
which哪一個 you can use, if you're a large organization組織,
291
773771
2903
如果你是個大型組織,
則可以供你使用,
13:08
a school學校, a university大學, or maybe a news新聞 agency機構,
292
776674
3755
例如一所學校、大學,或是新聞媒體,
13:12
to certify證明 yourself你自己 as globally全球 knowledgeable懂行.
293
780429
3628
用來證明你具備全球知識。
13:16
Basically基本上 meaning含義, we don't hire聘請 people
294
784057
2963
基本上,這意味著我們不聘用
13:19
who score得分了 like chimpanzees黑猩猩.
295
787020
2270
得分和黑猩猩一樣高的人。
13:21
Of course課程 you shouldn't不能.
296
789290
2360
各位當然不該像黑猩猩一樣。
13:23
So maybe 10 years年份 from now,
297
791650
2271
所以,或許十年內,
13:25
if this project項目 succeeds成功,
298
793921
1992
如果計劃成功的話,
13:27
you will be sitting坐在 in an interview訪問
299
795913
2248
那麼各位在工作面談中,
13:30
having to fill out this crazy global全球 knowledge知識.
300
798161
4206
就得做這份全球知識的問卷。
13:34
So now we come to the practical實際的 tricks技巧.
301
802367
3363
接下來,我們來談談實用的訣竅。
13:37
How are you going to succeed成功?
302
805730
1904
各位要怎樣成功呢?
13:39
There is, of course課程, one way,
303
807634
3579
當然,其中一種方法,
13:43
which哪一個 is to sit down late晚了 nights
304
811213
1737
就是在夜深人靜時坐下來,
13:44
and learn學習 all the facts事實 by heart
305
812950
2155
用心熟記這些知識,
13:47
by reading all these reports報告.
306
815105
1768
通過閱讀各種的研究報告。
13:48
That will never happen發生, actually其實.
307
816873
2012
實際上,沒人會這麼做。
13:50
Not even Hans漢斯 thinks that's going to happen發生.
308
818885
2709
連 Hans 都不覺得會有人如此。
13:53
People don't have that time.
309
821594
1373
人們沒有時間這麼做。
13:54
People like shortcuts快捷鍵, and here are the shortcuts快捷鍵.
310
822967
3383
人們喜歡捷徑,而捷徑有這些:
13:58
We need to turn our intuition直覺 into strength強度 again.
311
826350
2774
我們需要再次將直覺轉化為優勢。
14:01
We need to be able能夠 to generalize概括.
312
829124
1444
我們需要歸納。
14:02
So now I'm going to show顯示 you some tricks技巧
313
830568
2105
所以,我要教各位一些訣竅,
14:04
where the misconceptions誤解 are turned轉身 around
314
832673
2550
可以把誤解予以扭轉,
14:07
into rules規則 of thumb拇指.
315
835223
3208
成為一套經驗法則。
14:10
Let's start開始 with the first misconception誤解.
316
838431
2014
讓我們從第一種錯誤觀念開始。
14:12
This is very widespread廣泛.
317
840445
1637
這是種很普遍的錯誤觀念。
14:14
Everything is getting得到 worse更差.
318
842082
1866
事情會每況愈下。
14:15
You heard聽說 it. You thought it yourself你自己.
319
843948
3270
你聽過。你自己也這麼想過。
14:19
The other way to think is, most things improve提高.
320
847218
3029
另一種思考的方向是,
多數事情都會好轉。
14:22
So you're sitting坐在 with a question in front面前 of you
321
850247
2136
所以,當各位坐在那裡答題
14:24
and you're unsure不確定. You should guess猜測 "improve提高."
322
852383
3233
卻不確定該如何回答,
那你就應該要猜「變好」。
14:27
Okay? Don't go for the worse更差.
323
855616
2984
可以嗎?不要往壞的方向猜。
14:30
That will help you score得分了 better on our tests測試.
324
858600
2363
這會幫助各位在測驗中得到更高分。
14:32
(Applause掌聲)
325
860963
1216
(鼓掌)
14:34
That was the first one.
326
862179
4226
那是第一項訣竅。
14:38
There are rich豐富 and poor較差的
327
866405
1759
世上有富人與窮人,
14:40
and the gap間隙 is increasing增加.
328
868164
1466
而貧富差距正在擴大。
14:41
It's a terrible可怕 inequality不等式.
329
869630
1655
這是種可惱的不平等。
14:43
Yeah, it's an unequal不等 world世界,
330
871285
2201
是啊,這是個不公平的世界,
14:45
but when you look at the data數據, it's one hump駝峰.
331
873486
2325
但當你檢視資料,卻呈現出單峰分布。
14:47
Okay? If you feel unsure不確定,
332
875811
1854
好嗎?如果你不確定,
14:49
go for "the most people are in the middle中間."
333
877665
2753
就選「多數人都在中間」。
14:52
That's going to help you get the answer回答 right.
334
880418
1983
這可以幫助各位答題正確。
14:54
Now, the next下一個 preconceived先入為主 idea理念 is
335
882401
3707
另一個先入為主的觀念是,
14:58
first countries國家 and people need to be very, very rich豐富
336
886108
3625
國家與人民必先富裕,
15:01
to get the social社會 development發展
337
889733
2326
然後社會才能進步,
15:04
like girls女孩 in school學校 and be ready準備 for natural自然 disasters災害.
338
892059
3451
正如女性就學及對自然災害的準備。
15:07
No, no, no. That's wrong錯誤.
339
895510
1686
不對,那是錯誤的觀念。
15:09
Look: that huge巨大 hump駝峰 in the middle中間
340
897196
2120
看,那些處在中間一大片單峰的地區
15:11
already已經 have girls女孩 in school學校.
341
899316
2443
已經解決了女性就學的問題。
15:13
So if you are unsure不確定, go for the
342
901759
2328
所以,如果各位不確定,
就選擇「多數人已擁有該項,」
15:16
"the majority多數 already已經 have this,"
343
904087
1395
15:17
like electricity電力 and girls女孩 in
school學校, these kinds of things.
344
905482
3043
比如電力供應和女性就學之類的。
15:20
They're only rules規則 of thumb拇指,
345
908525
2216
這些只是經驗法則,
15:22
so of course課程 they don't apply應用 to everything,
346
910741
2390
並不必然適用於所有事物,
15:25
but this is how you can generalize概括.
347
913131
1657
但這是各位可以進行歸納的方式。
15:26
Let's look at the last one.
348
914788
1965
最後一個訣竅。
15:28
If something, yes, this is a good one,
349
916753
3301
如果某件事...... 好,這個不錯。
15:32
sharks鯊魚 are dangerous危險.
350
920054
2173
鯊魚很危險。
15:34
No — well, yes, but they are not so important重要
351
922227
4399
不對哦..... 好吧,它們是危險的,
但它們在全球的統計上並不顯著,
15:38
in the global全球 statistics統計, that is what I'm saying.
352
926626
2976
這是我想表達的。
15:41
I actually其實, I'm very afraid害怕 of sharks鯊魚.
353
929602
2531
實際上,我非常害怕鯊魚。
15:44
So as soon不久 as I see a question
about things I'm afraid害怕 of,
354
932133
2844
所以,一旦遇到我所害怕的議題,
15:46
which哪一個 might威力 be earthquakes地震, other religions宗教,
355
934977
2933
像是地震,其他的宗教,
15:49
maybe I'm afraid害怕 of terrorists恐怖分子 or sharks鯊魚,
356
937910
3038
我或許害怕恐怖份子或鯊魚,
15:52
anything that makes品牌 me feel,
357
940948
1159
任何讓我覺得,
15:54
assume承擔 you're going to exaggerate誇大 the problem問題.
358
942107
2501
認為你們會加以誇大的問題。
15:56
That's a rule規則 of thumb拇指.
359
944608
1837
那是種經驗法則。
15:58
Of course課程 there are dangerous危險
things that are also great.
360
946445
2159
當然啦,某些危險的事也是很贊的。
16:00
Sharks鯊魚 kill very, very few少數.
That's how you should think.
361
948604
3585
鯊魚獵殺人數很少。那是各位該想到的。
16:04
With these four rules規則 of thumb拇指,
362
952189
3738
以這四條經驗法則,
16:07
you could probably大概 answer回答 better than the chimps黑猩猩,
363
955927
3360
各位應該可以答得比黑猩猩好,
16:11
because the chimps黑猩猩 cannot不能 do this.
364
959287
1954
因為黑猩猩無法做到。
16:13
They cannot不能 generalize概括 these kinds of rules規則.
365
961241
2603
他們無法歸納出這種法則。
16:15
And hopefully希望 we can turn your world世界 around
366
963844
4012
希望我們可以扭轉各位的世界,
16:19
and we're going to beat擊敗 the chimps黑猩猩. Okay?
367
967856
2835
並且讓大家打敗黑猩猩,好嗎?
16:22
(Applause掌聲)
368
970691
3921
(掌聲)
16:31
That's a systematic系統的 approach途徑.
369
979160
2088
那是個系統性的方法。
16:33
Now the question, is this important重要?
370
981248
2564
現在問題在於,這重要嗎?
16:35
Yeah, it's important重要 to understand理解 poverty貧窮,
371
983812
2726
是,重要的是瞭解貧窮,
16:38
extreme極端 poverty貧窮 and how to fight鬥爭 it,
372
986538
3247
赤貧與如何對抗貧窮問題,
16:41
and how to bring帶來 girls女孩 in school學校.
373
989785
2045
還有如何讓女性就學。
16:43
When we realize實現 that actually其實 it's
succeeding下一, we can understand理解 it.
374
991830
4340
當我們明白實際上正在取得成功,
我們就能瞭解它。
16:48
But is it important重要 for everyone大家 else其他
375
996170
1812
但對於那些極端富裕的人們,
這是否重要呢?
16:49
who cares管它 about the rich豐富 end結束 of this scale規模?
376
997982
2454
16:52
I would say yes, extremely非常 important重要,
377
1000436
2044
我會說,是的,極端重要,
16:54
for the same相同 reason原因.
378
1002480
1509
基於同一種理由。
16:55
If you have a fact-based以事實為依據 worldview世界觀 of today今天,
379
1003989
3065
若你具備以事實為基礎的世界觀,
16:59
you might威力 have a chance機會 to understand理解
380
1007054
1618
你或許有機會可以瞭解,
17:00
what's coming未來 next下一個 in the future未來.
381
1008672
1754
接下來會發生什麼。
17:02
We're going back to these two humps in 1975.
382
1010426
2438
我們回到 1975 年這兩個高峰。
17:04
That's when I was born天生,
383
1012864
1350
那是我剛出生的時候,
17:06
and I selected the West西.
384
1014214
3019
然後我選了西方,
17:09
That's the current當前 EU歐洲聯盟 countries國家 and North America美國.
385
1017233
4183
就是現在的歐盟與北美。
17:13
Let's now see how the rest休息 and the West西 compares比較
386
1021416
3383
我們來看看西方與世界其他地方,
17:16
in terms條款 of how rich豐富 you are.
387
1024799
2081
在富裕程度上的比較。
17:18
These are the people who can afford給予
388
1026880
2251
這些是可以負擔
17:21
to fly abroad國外 with an airplane飛機 for a vacation假期.
389
1029131
3578
搭飛機出國度假的人們。
17:24
In 1975, only 30 percent百分 of them lived生活
390
1032709
3308
在 1975 年,這些人當中
只有 30% 住在歐盟與北美以外。
17:28
outside EU歐洲聯盟 and North America美國.
391
1036017
2967
17:30
But this has changed, okay?
392
1038984
2329
但這已經改變了,好嗎?
17:33
So first, let's look at the change更改 up till直到 today今天, 2014.
393
1041313
4743
所以,我們先看一下到目前,
直到2014年的轉變。
17:38
Today今天 it's 50/50.
394
1046056
1388
現在的比例是 50/50。
17:39
The Western西 domination統治 is over, as of today今天.
395
1047444
3681
就當下而言,西方主導時期已經結束。
17:43
That's nice不錯. So what's going to happen發生 next下一個?
396
1051125
2199
那很好,但接下來會怎樣?
17:45
Do you see the big hump駝峰? Did you see how it moved移動?
397
1053324
3243
看到這巨峰嗎?看到它如何移動嗎?
17:48
I did a little experiment實驗. I went to the IMF國際貨幣基金組織,
International國際 Monetary貨幣 Fund基金, website網站.
398
1056567
6031
我做了個試驗。
我到國際貨幣基金的網站。
17:54
They have a forecast預測 for the next下一個
five years年份 of GDPGDP per capita人頭.
399
1062598
4163
他們針對未來五年
人均生產毛額進行了預測。
17:58
So I can use that to go five years年份 into the future未來,
400
1066761
3017
所以我可以用以探究五年後的未來,
18:01
assuming假設 the income收入 inequality不等式
of each country國家 is the same相同.
401
1069778
3335
假設每個國家的
收入不均程度是相同的。
18:05
I did that, but I went even further進一步.
402
1073113
1927
但我更進一步,
18:07
I used those five years年份 for the next下一個 20 years年份
403
1075040
3178
用那五年,以相同的速度,
來預測未來二十年,
18:10
with the same相同 speed速度, just as an
experiment實驗 what might威力 actually其實 happen發生.
404
1078218
5277
以實驗性地探究未來會發生什麼。
18:15
Let's move移動 into the future未來.
405
1083495
1367
讓我們看看未來的情況。
18:16
In 2020, it's 57 percent百分 in the rest休息.
406
1084862
5220
在 2020 年,西方以外有 57%,
18:22
In 2025, 63 percent百分.
407
1090082
3036
2025 年,是63%。
18:25
2030, 68. And in 2035, the West西 is
outnumbered寡不敵眾 in the rich豐富 consumer消費者 market市場.
408
1093118
9237
2030 年,則是 68%。
而 2035 年,西方
在富人消費市場中完全被超越。
這只是把人均生產毛額投射到未來。
18:34
These are just projections預測 of
GDPGDP per capita人頭 into the future未來.
409
1102355
3347
18:37
Seventy-three七十三 percent百分 of the rich豐富 consumers消費者
410
1105702
2355
73% 的富裕消費人口,
18:40
are going to live生活 outside North America美國 and Europe歐洲.
411
1108057
3618
將住在北美與歐洲以外的地區。
18:43
So yes, I think it's a good idea理念 for
a company公司 to use this certificate證書
412
1111675
4198
所以,我覺得這是個不錯的主意,
讓公司以此認證
18:47
to make sure to make fact-事實-
based基於 decisions決定 in the future未來.
413
1115873
3407
在未來會基於事實來制訂政策。
18:51
Thank you very much.
414
1119280
1476
非常謝謝各位。
18:52
(Applause掌聲)
415
1120756
2501
(掌聲)
19:00
Bruno布魯諾 Giussani吉薩尼: Hans漢斯 and Ola奧拉 Rosling羅斯林!
416
1128184
2052
感謝 Hans 和 Ola Rosling!
Translated by Adrienne Lin
Reviewed by Sherry Chen

▲Back to top

ABOUT THE SPEAKERS
Hans Rosling - Global health expert; data visionary
In Hans Rosling’s hands, data sings. Global trends in health and economics come to vivid life. And the big picture of global development—with some surprisingly good news—snaps into sharp focus.

Why you should listen

Even the most worldly and well-traveled among us have had their perspectives shifted by Hans Rosling. A professor of global health at Sweden's Karolinska Institute, his work focused on dispelling common myths about the so-called developing world, which (as he pointed out) is no longer worlds away from the West. In fact, most of the Third World is on the same trajectory toward health and prosperity, and many countries are moving twice as fast as the west did.

What set Rosling apart wasn't just his apt observations of broad social and economic trends, but the stunning way he presented them. Guaranteed: You've never seen data presented like this. A presentation that tracks global health and poverty trends should be, in a word: boring. But in Rosling's hands, data sings. Trends come to life. And the big picture — usually hazy at best — snaps into sharp focus.

Rosling's presentations were grounded in solid statistics (often drawn from United Nations and World Bank data), illustrated by the visualization software he developed. The animations transform development statistics into moving bubbles and flowing curves that make global trends clear, intuitive and even playful. During his legendary presentations, Rosling took this one step farther, narrating the animations with a sportscaster's flair.

Rosling developed the breakthrough software behind his visualizations through his nonprofit Gapminder, founded with his son and daughter-in-law. The free software — which can be loaded with any data — was purchased by Google in March 2007. (Rosling met the Google founders at TED.)

Rosling began his wide-ranging career as a physician, spending many years in rural Africa tracking a rare paralytic disease (which he named konzo) and discovering its cause: hunger and badly processed cassava. He co-founded Médecins sans Frontièrs (Doctors without Borders) Sweden, wrote a textbook on global health, and as a professor at the Karolinska Institut in Stockholm initiated key international research collaborations. He's also personally argued with many heads of state, including Fidel Castro.

Hans Rosling passed away in February 2017. He is greatly missed.


More profile about the speaker
Hans Rosling | Speaker | TED.com
Ola Rosling - Director of the Gapminder Foundation
Ola Rosling is the director and co-founder of the Gapminder Foundation. Previously, he was the Google Public Data product manager.

Why you should listen
To fight devastating ignorance, we have to be more systematic about spreading facts that matter. In this talk with Hans Rosling, Ola teaches 4 ways to quickly learn more about the world of facts.
More profile about the speaker
Ola Rosling | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee