ABOUT THE SPEAKER
Benoit Mandelbrot - Mathematician
Benoit Mandelbrot's work led the world to a deeper understanding of fractals, a broad and powerful tool in the study of roughness, both in nature and in humanity's works.

Why you should listen

Studying complex dynamics in the 1970s, Benoit Mandelbrot had a key insight about a particular set of mathematical objects: that these self-similar structures with infinitely repeating complexities were not just curiosities, as they'd been considered since the turn of the century, but were in fact a key to explaining non-smooth objects and complex data sets -- which make up, let's face it, quite a lot of the world. Mandelbrot coined the term "fractal" to describe these objects, and set about sharing his insight with the world.

The Mandelbrot set (expressed as z² + c) was named in Mandelbrot's honor by Adrien Douady and John H. Hubbard. Its boundary can be magnified infinitely and yet remain magnificently complicated, and its elegant shape made it a poster child for the popular understanding of fractals. Led by Mandelbrot's enthusiastic work, fractal math has brought new insight to the study of pretty much everything, from the behavior of stocks to the distribution of stars in the universe.

Benoit Mandelbrot appeared at the first TED in 1984, and returned in 2010 to give an overview of the study of fractals and the paradigm-flipping insights they've brought to many fields. He died in October 2010 at age 85. Read more about his life on NYBooks.com >>

More profile about the speaker
Benoit Mandelbrot | Speaker | TED.com
TED2010

Benoit Mandelbrot: Fractals and the art of roughness

Benoit Mandelbrot: 碎形與粗糙度的藝術

Filmed:
1,448,555 views

在 TED2010 大會上,數學界的傳奇人物 Benoit Mandelbrot 展開他在 1984 年首次於 TED 討論的主題:極度複雜的粗糙程度、以及碎型理論可以在看似複雜的圖形中找出秩序的方法。
- Mathematician
Benoit Mandelbrot's work led the world to a deeper understanding of fractals, a broad and powerful tool in the study of roughness, both in nature and in humanity's works. Full bio

Double-click the English transcript below to play the video.

00:15
Thank you very much.
0
0
2000
謝謝
00:17
Please excuse藉口 me for sitting坐在; I'm very old.
1
2000
3000
請原諒我坐著說話,我老了
00:20
(Laughter笑聲)
2
5000
2000
(笑聲)
00:22
Well, the topic話題 I'm going to discuss討論
3
7000
2000
嗯,我今天要談論的主題
00:24
is one which哪一個 is, in a certain某些 sense, very peculiar奇特
4
9000
3000
是一個在某種程度上非常特殊的主題
00:27
because it's very old.
5
12000
2000
因為它非常古老
00:29
Roughness粗糙度 is part部分 of human人的 life
6
14000
3000
粗糙度,自古以來
00:32
forever永遠 and forever永遠,
7
17000
2000
就是人類生命的一部份
00:34
and ancient authors作者 have written書面 about it.
8
19000
3000
古老的作家曾寫過它
00:37
It was very much uncontrollable不可控,
9
22000
2000
它是非常難以掌握的概念
00:39
and in a certain某些 sense,
10
24000
2000
而且,在某種意義上說來,
00:41
it seemed似乎 to be the extreme極端 of complexity複雜,
11
26000
3000
它看起來極度複雜,
00:44
just a mess食堂, a mess食堂 and a mess食堂.
12
29000
2000
亂無章法,
00:46
There are many許多 different不同 kinds of mess食堂.
13
31000
2000
有著許多不同種類的混亂。
00:48
Now, in fact事實,
14
33000
2000
現在,事實上
00:50
by a complete完成 fluke吸蟲,
15
35000
2000
我幸運地
00:52
I got involved參與 many許多 years年份 ago
16
37000
3000
在許多年前參與了一項
00:55
in a study研究 of this form形成 of complexity複雜,
17
40000
3000
關於這種複雜圖形的研究
00:58
and to my utter說出 amazement驚愕,
18
43000
2000
我驚異地發現
01:00
I found發現 traces痕跡 --
19
45000
2000
一些蛛絲馬跡——
01:02
very strong強大 traces痕跡, I must必須 say --
20
47000
2000
我必須說——有非常顯著的蛛絲馬跡顯示,
01:04
of order訂購 in that roughness粗糙度.
21
49000
3000
粗糙度具有次序
01:07
And so today今天, I would like to present當下 to you
22
52000
2000
因此今天,我要向各位呈現
01:09
a few少數 examples例子
23
54000
2000
一些關於這項研究
01:11
of what this represents代表.
24
56000
2000
的例子。
01:13
I prefer比較喜歡 the word roughness粗糙度
25
58000
2000
比起不規則度(irregularity)
01:15
to the word irregularity不規則
26
60000
2000
我更喜歡用粗糙度(roughness)這個詞
01:17
because irregularity不規則 --
27
62000
2000
因為,不規則度(irregularity)
01:19
to someone有人 who had Latin拉丁
28
64000
2000
對學過拉丁文的人來說
01:21
in my long-past長期以往 youth青年 --
29
66000
2000
(也就是在我遙遠的青少年時)
01:23
means手段 the contrary相反 of regularity規律性.
30
68000
2000
是規律(regularity)的反義詞,
01:25
But it is not so.
31
70000
2000
然而,在真實世界裏,
01:27
Regularity規律 is the contrary相反 of roughness粗糙度
32
72000
3000
粗糙度才是規律的反義詞。
01:30
because the basic基本 aspect方面 of the world世界
33
75000
2000
因為世界的基本外觀
01:32
is very rough.
34
77000
2000
是極度粗糙、崎嶇的。
01:34
So let me show顯示 you a few少數 objects對象.
35
79000
3000
我給各位看看一些物體
01:37
Some of them are artificial人造.
36
82000
2000
有些是人工的
01:39
Others其他 of them are very real真實, in a certain某些 sense.
37
84000
3000
有些,在某種程度上,是非常真實的
01:42
Now this is the real真實. It's a cauliflower菜花.
38
87000
3000
而現在這一個是真的。這是一朵花椰菜
01:45
Now why do I show顯示 a cauliflower菜花,
39
90000
3000
爲什麽我要展示花椰菜?
01:48
a very ordinary普通 and ancient vegetable蔬菜?
40
93000
3000
爲什麽要展示這麼一個普通、古老的蔬菜呢?
01:51
Because old and ancient as it may可能 be,
41
96000
3000
因為古老的事物,恰如其分地,
01:54
it's very complicated複雜 and it's very simple簡單,
42
99000
3000
非常複雜、
01:57
both at the same相同 time.
43
102000
2000
同時也非常簡單。
01:59
If you try to weigh稱重 it -- of course課程 it's very easy簡單 to weigh稱重 it,
44
104000
3000
如果你試著掂掂它的重量,當然,我們很容易可以量出來
02:02
and when you eat it, the weight重量 matters事項 --
45
107000
3000
當你要吃它時,重量是個問題
02:05
but suppose假設 you try to
46
110000
3000
但是,假如你試著
02:08
measure測量 its surface表面.
47
113000
2000
測量它的表面
02:10
Well, it's very interesting有趣.
48
115000
2000
這就非常有意思了
02:12
If you cut, with a sharp尖銳 knife,
49
117000
3000
如果你用一把鋒利的刀子
02:15
one of the florets小花 of a cauliflower菜花
50
120000
2000
切下花椰菜中一個小花
02:17
and look at it separately分別,
51
122000
2000
分開來看它,
02:19
you think of a whole整個 cauliflower菜花, but smaller.
52
124000
3000
你會想,這是一整個花椰菜,只是小了些,
02:22
And then you cut again,
53
127000
2000
接著,你再切一刀,
02:24
again, again, again, again, again, again, again, again,
54
129000
3000
一而再,再而三地反復切它,
02:27
and you still get small cauliflowers花椰菜.
55
132000
2000
最後,你仍會得到一朵朵小花椰菜。
02:29
So the experience經驗 of humanity人性
56
134000
2000
所以人類的經驗
02:31
has always been that there are some shapes形狀
57
136000
3000
總是存在著一些
02:34
which哪一個 have this peculiar奇特 property屬性,
58
139000
2000
擁有特殊屬性的形狀,
02:36
that each part部分 is like the whole整個,
59
141000
3000
每個部分就如同它的整體,
02:39
but smaller.
60
144000
2000
只是稍微小了一些。
02:41
Now, what did humanity人性 do with that?
61
146000
3000
那麼此刻,人類對它做了些什麽研究?
02:44
Very, very little.
62
149000
3000
非常、非常少
02:47
(Laughter笑聲)
63
152000
3000
(笑聲)
02:50
So what I did actually其實 is to
64
155000
3000
所以實際上我所做的是
02:53
study研究 this problem問題,
65
158000
3000
研究這個問題
02:56
and I found發現 something quite相當 surprising奇怪.
66
161000
3000
找出某些令人詫異的東西
02:59
That one can measure測量 roughness粗糙度
67
164000
3000
找出可以衡量粗糙度的東西
03:02
by a number, a number,
68
167000
3000
透過數字,一個數目
03:05
2.3, 1.2 and sometimes有時 much more.
69
170000
3000
2.3、1.2,有時更多。
03:08
One day, a friend朋友 of mine,
70
173000
2000
有一天,我的朋友
03:10
to bug竊聽器 me,
71
175000
2000
試著激怒我,
03:12
brought a picture圖片 and said,
72
177000
2000
他帶一張照片給我,說:
03:14
"What is the roughness粗糙度 of this curve曲線?"
73
179000
2000
「這個曲線的粗糙度為何?」
03:16
I said, "Well, just short of 1.5."
74
181000
3000
我回答:「嗯,不到1.5」
03:19
It was 1.48.
75
184000
2000
那粗糙度只有 1.48
03:21
Now, it didn't take me any time.
76
186000
2000
不須花多少時間
03:23
I've been looking at these things for so long.
77
188000
2000
這些東西我已經已經看了許久,
03:25
So these numbers數字 are the numbers數字
78
190000
2000
這些數目是
03:27
which哪一個 denote表示 the roughness粗糙度 of these surfaces.
79
192000
3000
用來表示表面的粗糙度
03:30
I hasten to say that these surfaces
80
195000
2000
我必須事先聲明,這些表面外觀是
03:32
are completely全然 artificial人造.
81
197000
2000
完全人工的
03:34
They were doneDONE on a computer電腦,
82
199000
2000
它們由電腦做成
03:36
and the only input輸入 is a number,
83
201000
2000
唯一要輸入,就是一個數字
03:38
and that number is roughness粗糙度.
84
203000
3000
那數字就是粗糙度
03:41
So on the left,
85
206000
2000
在那左邊
03:43
I took the roughness粗糙度 copied複製 from many許多 landscapes景觀.
86
208000
3000
我複製許多景觀的表面粗糙度
03:46
To the right, I took a higher更高 roughness粗糙度.
87
211000
3000
在右邊,我取較高的粗糙度
03:49
So the eye, after a while,
88
214000
2000
所以,眼睛過了一會
03:51
can distinguish區分 these two very well.
89
216000
3000
便可以容易地區分兩者了
03:54
Humanity人性 had to learn學習 about measuring測量 roughness粗糙度.
90
219000
2000
人類必須學習如何衡量粗糙度
03:56
This is very rough, and this is sort分類 of smooth光滑, and this perfectly完美 smooth光滑.
91
221000
3000
這非常粗糙、這有點平滑、而這又極度平滑
03:59
Very few少數 things are very smooth光滑.
92
224000
3000
很少有東西是極度平滑的
04:03
So then if you try to ask questions問題:
93
228000
3000
因此,假使你試著提出一個問題:
04:06
"What's the surface表面 of a cauliflower菜花?"
94
231000
2000
花椰菜的表面積有多少?
04:08
Well, you measure測量 and measure測量 and measure測量.
95
233000
3000
嗯,你會一量再量
04:11
Each time you're closer接近, it gets得到 bigger,
96
236000
3000
每一次你靠近它,它就變得更大
04:14
down to very, very small distances距離.
97
239000
2000
可無限遞迴到很小的距離
04:16
What's the length長度 of the coastline海岸線
98
241000
2000
這些湖的沿岸
04:18
of these lakes湖泊?
99
243000
2000
有多長?
04:20
The closer接近 you measure測量, the longer it is.
100
245000
3000
當你越是測量它,它就越長
04:23
The concept概念 of length長度 of coastline海岸線,
101
248000
2000
沿岸線的概念
04:25
which哪一個 seems似乎 to be so natural自然
102
250000
2000
看起來是如此自然
04:27
because it's given特定 in many許多 cases,
103
252000
2000
因為,它在許多情況下被給定了
04:29
is, in fact事實, complete完成 fallacy謬論; there's no such這樣 thing.
104
254000
3000
但事實上,這完全謬誤。根本沒有這回事。
04:32
You must必須 do it differently不同.
105
257000
3000
你必須採取不同的做法
04:35
What good is that, to know these things?
106
260000
2000
要理解這些,該採取什麽樣的辦法呢?
04:37
Well, surprisingly出奇 enough足夠,
107
262000
2000
令人驚訝的是,
04:39
it's good in many許多 ways方法.
108
264000
2000
我們可以透過各種途徑
04:41
To begin開始 with, artificial人造 landscapes景觀,
109
266000
2000
首先,我發明的
04:43
which哪一個 I invented發明 sort分類 of,
110
268000
2000
這些人造景觀
04:45
are used in cinema電影 all the time.
111
270000
3000
都是用在電影上
04:48
We see mountains in the distance距離.
112
273000
2000
我們看到遠處的山
04:50
They may可能 be mountains, but they may可能 be just formulae公式, just cranked手搖 on.
113
275000
3000
也許真的是山,但也有可能是公式計算來的,
04:53
Now it's very easy簡單 to do.
114
278000
2000
現在要做這個是很容易了
04:55
It used to be very time-consuming耗時的, but now it's nothing.
115
280000
3000
以往,製作這些必須曠日費時,但現在根本沒什麼
04:58
Now look at that. That's a real真實 lung.
116
283000
3000
現在,看那,那是一個真正的肺臟
05:01
Now a lung is something very strange奇怪.
117
286000
2000
肺是一種非常古怪的東西
05:03
If you take this thing,
118
288000
2000
如果你測量它
05:05
you know very well it weighs very little.
119
290000
3000
你知道它的重量極小
05:08
The volume of a lung is very small,
120
293000
2000
肺的體積很小
05:10
but what about the area of the lung?
121
295000
3000
但肺的面積又如何呢?
05:13
Anatomists解剖學家 were arguing爭論 very much about that.
122
298000
3000
針對這個問題,以前解剖學家常有激烈的爭論
05:16
Some say that a normal正常 male's男的 lung
123
301000
3000
有些人說,普通男子的肺
05:19
has an area of the inside
124
304000
2000
面積有
05:21
of a basketball籃球 [court法庭].
125
306000
2000
一個籃球場大
05:23
And the others其他 say, no, five basketball籃球 [courts法院].
126
308000
3000
另外有些人認為,不,它有五個籃球場大
05:27
Enormous巨大 disagreements分歧.
127
312000
2000
大家所持的意見相當不同
05:29
Why so? Because, in fact事實, the area of the lung
128
314000
3000
爲什麽呢?因為事實上,肺的面積
05:32
is something very ill-defined不明確.
129
317000
2000
從沒有明確的定義。
05:35
The bronchi支氣管 branch, branch, branch
130
320000
3000
支氣管不斷分出分支
05:38
and they stop branching分枝,
131
323000
3000
而在其末梢停止了分支
05:41
not because of any matter of principle原理,
132
326000
3000
並不是和什麽原則有關
05:44
but because of physical物理 considerations注意事項:
133
329000
3000
而是由於肺臟裡頭的物理因素
05:47
the mucus粘液, which哪一個 is in the lung.
134
332000
3000
因為肺裏的粘液所致。
05:50
So what happens發生 is that in a way
135
335000
2000
在某種情況之下
05:52
you have a much bigger lung,
136
337000
2000
你會有較大的肺。
05:54
but it branches分支機構 and branches分支機構
137
339000
2000
但假使它不斷地分支出來,
05:56
down to distances距離 about the same相同 for a whale, for a man
138
341000
3000
在很微觀的情形下,
05:59
and for a little rodent囓齒動物.
139
344000
2000
鯨魚、人和齧齒目動物會有相等面積的肺。
06:02
Now, what good is it to have that?
140
347000
3000
這有什麼好處嗎?
06:05
Well, surprisingly出奇 enough足夠, amazingly令人驚訝 enough足夠,
141
350000
2000
嗯,令人訝異地
06:07
the anatomists解剖學家 had a very poor較差的 idea理念
142
352000
3000
直到近日以來,解剖學家都不太理解
06:10
of the structure結構體 of the lung until直到 very recently最近.
143
355000
3000
肺臟的構造,
06:13
And I think that my mathematics數學,
144
358000
2000
我想我的數學
06:15
surprisingly出奇 enough足夠,
145
360000
2000
令人驚訝地
06:17
has been of great help
146
362000
2000
可以帶來許多幫助
06:19
to the surgeons外科醫生
147
364000
2000
給外科醫生
06:21
studying研究 lung illnesses疾病
148
366000
2000
幫助他們研究肺臟
06:23
and also kidney illnesses疾病,
149
368000
2000
和腎臟
06:25
all these branching分枝 systems系統,
150
370000
2000
這些分叉管的系統的疾病
06:27
for which哪一個 there was no geometry幾何.
151
372000
3000
因爲在這些系統中沒有幾何學。
06:30
So I found發現 myself, in other words,
152
375000
2000
所以,換句話說,我發現我自己,
06:32
constructing建設 a geometry幾何,
153
377000
2000
正在建立一種幾何學
06:34
a geometry幾何 of things which哪一個 had no geometry幾何.
154
379000
3000
一種沒有幾何圖形的東西的的幾何學
06:37
And a surprising奇怪 aspect方面 of it
155
382000
2000
而且,令人訝異的是
06:39
is that very often經常, the rules規則 of this geometry幾何
156
384000
3000
這個幾何學的規則
06:42
are extremely非常 short.
157
387000
2000
經常是極短的,
06:44
You have formulas公式 that long.
158
389000
2000
你有這麼長的公式,
06:46
And you crank曲柄 it several一些 times.
159
391000
2000
曲折了好幾次
06:48
Sometimes有時 repeatedly反复: again, again, again,
160
393000
2000
有時候就只是一味地重復
06:50
the same相同 repetition重複.
161
395000
2000
再重複,循著同樣方式反複循環
06:52
And at the end結束, you get things like that.
162
397000
2000
最後,你會得到像這樣的東西
06:54
This cloud is completely全然,
163
399000
2000
這片雲是100%
06:56
100 percent百分 artificial人造.
164
401000
3000
完全人工的
06:59
Well, 99.9.
165
404000
2000
嗯,99.9。
07:01
And the only part部分 which哪一個 is natural自然
166
406000
2000
唯一自然的地方
07:03
is a number, the roughness粗糙度 of the cloud,
167
408000
2000
是數字,也就是這片雲的粗糙度,
07:05
which哪一個 is taken採取 from nature性質.
168
410000
2000
是取自自然的
07:07
Something so complicated複雜 like a cloud,
169
412000
2000
有時,像雲這麼複雜的東西,
07:09
so unstable不穩定, so varying不同,
170
414000
2000
是這麼不穩定、變化多端
07:11
should have a simple簡單 rule規則 behind背後 it.
171
416000
3000
在它背後,應該有一個簡單的規則才是
07:14
Now this simple簡單 rule規則
172
419000
3000
現在,這個簡單規則
07:17
is not an explanation說明 of clouds.
173
422000
3000
並不是解釋雲層
07:20
The seer先見者 of clouds had to
174
425000
2000
看這片雲的人必須
07:22
take account帳戶 of it.
175
427000
2000
有這個認知。
07:24
I don't know how much advanced高級
176
429000
3000
我不認為這些照片有多先進,
07:27
these pictures圖片 are. They're old.
177
432000
2000
它們很舊了
07:29
I was very much involved參與 in it,
178
434000
2000
我以前涉獵極深,
07:31
but then turned轉身 my attention注意 to other phenomena現象.
179
436000
3000
但後來,我轉而研究其他現象了
07:34
Now, here is another另一個 thing
180
439000
2000
現在,這裡有另一個
07:36
which哪一個 is rather interesting有趣.
181
441000
3000
更有趣的東西
07:39
One of the shattering驚天動地 events事件
182
444000
2000
這是在數學史上一件
07:41
in the history歷史 of mathematics數學,
183
446000
2000
令人震驚的事件,
07:43
which哪一個 is not appreciated讚賞 by many許多 people,
184
448000
3000
當時沒多少人理解,
07:46
occurred發生 about 130 years年份 ago,
185
451000
2000
發生在大約 130 年前、
07:48
145 years年份 ago.
186
453000
2000
或 145 年前。
07:50
Mathematicians數學家 began開始 to create創建
187
455000
2000
當時,數學家開始創造
07:52
shapes形狀 that didn't exist存在.
188
457000
2000
不存在的形狀
07:54
Mathematicians數學家 got into self-praise自我表揚
189
459000
3000
數學家陷入一種自我耽溺的地步
07:57
to an extent程度 which哪一個 was absolutely絕對 amazing驚人,
190
462000
2000
他們完全沉浸於
07:59
that man can invent發明 things
191
464000
2000
人類發明的喜悅之中
08:01
that nature性質 did not know.
192
466000
2000
而這些發明是自然所不知曉的事物
08:03
In particular特定, it could invent發明
193
468000
2000
特別是,發明一種
08:05
things like a curve曲線 which哪一個 fills填充 the plane平面.
194
470000
3000
可以填補平面的曲線
08:08
A curve's曲線的 a curve曲線, a plane's飛機的 a plane平面,
195
473000
2000
曲線是曲線,平面是平面,
08:10
and the two won't慣於 mix混合.
196
475000
2000
兩者無法混合
08:12
Well, they do mix混合.
197
477000
2000
但事實上,他們是可以混在一起的
08:14
A man named命名 Peano皮亞諾
198
479000
2000
有一個叫 Peano 的先生
08:16
did define確定 such這樣 curves曲線,
199
481000
2000
真的確立了這些曲線,
08:18
and it became成為 an object目的 of extraordinary非凡 interest利益.
200
483000
3000
於是,這形成一個當時多數人極感興趣的研究對象
08:21
It was very important重要, but mostly大多 interesting有趣
201
486000
3000
它在當時非常重要,但也相當有趣
08:24
because a kind of break打破,
202
489000
2000
因為,一種突破
08:26
a separation分割 between之間
203
491000
2000
必須是一種區隔,
08:28
the mathematics數學 coming未來 from reality現實, on the one hand,
204
493000
3000
它區隔來自描述現實現象的數學
08:31
and new mathematics數學 coming未來 from pure man's男人的 mind心神.
205
496000
3000
與來自人類純粹心智的新數學
08:34
Well, I was very sorry to point out
206
499000
3000
嗯,我必須很遺憾地指出
08:37
that the pure man's男人的 mind心神
207
502000
2000
純粹的人類心智
08:39
has, in fact事實,
208
504000
2000
事實上
08:41
seen看到 at long last
209
506000
2000
最終見到了
08:43
what had been seen看到 for a long time.
210
508000
2000
他們長久以來視而不見的事物
08:45
And so here I introduce介紹 something,
211
510000
2000
所以,在這裡,我要向大家介紹
08:47
the set of rivers河流 of a plane-filling平面填充 curve曲線.
212
512000
3000
一組河流的平面填充曲線
08:50
And well,
213
515000
2000
而且
08:52
it's a story故事 unto itself本身.
214
517000
2000
它本身就是一個故事。
08:54
So it was in 1875 to 1925,
215
519000
3000
1875 年到 1925 年
08:57
an extraordinary非凡 period
216
522000
2000
是一段了不起的時期
08:59
in which哪一個 mathematics數學 prepared準備 itself本身 to break打破 out from the world世界.
217
524000
3000
在這段期間,數學正準備突破自己的世界,
09:02
And the objects對象 which哪一個 were used
218
527000
2000
當我還是個小孩、學生的時候
09:04
as examples例子, when I was
219
529000
2000
當時作為範例的
09:06
a child兒童 and a student學生, as examples例子
220
531000
2000
物體
09:08
of the break打破 between之間 mathematics數學
221
533000
3000
區分了數學與
09:11
and visible可見 reality現實 --
222
536000
2000
可見的現實——
09:13
those objects對象,
223
538000
2000
我把那些物體
09:15
I turned轉身 them completely全然 around.
224
540000
2000
完全顛倒過來
09:17
I used them for describing說明
225
542000
2000
我把它們用來描述
09:19
some of the aspects方面 of the complexity複雜 of nature性質.
226
544000
3000
自然的若干繁複面向
09:22
Well, a man named命名 Hausdorff豪斯多夫 in 1919
227
547000
3000
1919 年,有一位叫做 Hausdorff 的先生
09:25
introduced介紹 a number which哪一個 was just a mathematical數學的 joke玩笑,
228
550000
3000
引介了一個數字,這個數字在當時被看作數學玩笑
09:28
and I found發現 that this number
229
553000
2000
但我發現這個數值
09:30
was a good measurement測量 of roughness粗糙度.
230
555000
2000
卻是衡量粗糙度的好工具
09:32
When I first told it to my friends朋友 in mathematics數學
231
557000
2000
當我第一次把這個發現告訴我數學界的朋友時,
09:34
they said, "Don't be silly愚蠢. It's just something [silly愚蠢]."
232
559000
3000
他們說:「別傻了,那只不過是件無聊蠢事。」
09:37
Well actually其實, I was not silly愚蠢.
233
562000
3000
然而事實上,我當時並不傻,
09:40
The great painter畫家 Hokusai北齋 knew知道 it very well.
234
565000
3000
偉大的畫家葛飾北齋(Hokusai)深知這個道理
09:43
The things on the ground地面 are algae藻類.
235
568000
2000
這些涉及複數的問題
09:45
He did not know the mathematics數學; it didn't yet然而 exist存在.
236
570000
3000
他不懂數學,那時數學尚未存在
09:48
And he was Japanese日本 who had no contact聯繫 with the West西.
237
573000
3000
他是個日本人,從未接觸過西方世界
09:51
But painting繪畫 for a long time had a fractal分形 side.
238
576000
3000
但長久以來,他的畫作擁有碎形面
09:54
I could speak說話 of that for a long time.
239
579000
2000
我可以花很多時間談論這個
09:56
The Eiffel艾菲爾 Tower has a fractal分形 aspect方面.
240
581000
3000
艾菲爾鐵塔有個碎形的外觀
09:59
I read the book that Mr先生. Eiffel艾菲爾 wrote about his tower,
241
584000
3000
我在書上讀到,埃菲爾先生寫過他的鐵塔
10:02
and indeed確實 it was astonishing驚人 how much he understood了解.
242
587000
3000
確實,令人驚訝地,他非常瞭解碎型
10:05
This is a mess食堂, mess食堂, mess食堂, Brownian布朗 loop循環.
243
590000
3000
這是一個混亂、混亂、混亂的布朗寧迴圈
10:08
One day I decided決定 --
244
593000
2000
有一天,在我職業生涯的半途
10:10
halfway through通過 my career事業,
245
595000
2000
我發現
10:12
I was held保持 by so many許多 things in my work --
246
597000
3000
我的工作被許多事情絆住
10:15
I decided決定 to test測試 myself.
247
600000
3000
我決定測試自己
10:18
Could I just look at something
248
603000
2000
看我是否可以
10:20
which哪一個 everybody每個人 had been looking at for a long time
249
605000
3000
從每個人看了許久的事物中
10:23
and find something dramatically顯著 new?
250
608000
3000
發現什麽戲劇化的新東西?
10:26
Well, so I looked看著 at these
251
611000
3000
嗯,於是我看到了這些
10:29
things called Brownian布朗 motion運動 -- just goes around.
252
614000
3000
叫布朗寧運動的東西,只有一圈
10:32
I played發揮 with it for a while,
253
617000
2000
我和它玩了一會,
10:34
and I made製作 it return返回 to the origin起源.
254
619000
3000
我使它回到原點
10:37
Then I was telling告訴 my assistant助理,
255
622000
2000
接著,我告訴我的助理:
10:39
"I don't see anything. Can you paint塗料 it?"
256
624000
2000
「我看不到任何東西。你能把它畫出來嗎?」
10:41
So he painted it, which哪一個 means手段
257
626000
2000
於是他畫了出來,這意謂著
10:43
he put inside everything. He said:
258
628000
2000
他把所有都放了進去。他說:
10:45
"Well, this thing came來了 out ..." And I said, "Stop! Stop! Stop!
259
630000
3000
「這東西出現了......」我說:「停下來! 停下來! 停下來!
10:48
I see; it's an island."
260
633000
3000
我明白了,這是一座島嶼。」
10:51
And amazing驚人.
261
636000
2000
多麼驚人
10:53
So Brownian布朗 motion運動, which哪一個 happens發生 to have
262
638000
2000
因此,布朗寧運動剛好有
10:55
a roughness粗糙度 number of two, goes around.
263
640000
3000
一個粗糙度數字2,它繞了一圈
10:58
I measured測量 it, 1.33.
264
643000
2000
我測量它,是1.33
11:00
Again, again, again.
265
645000
2000
一而再,再而三
11:02
Long measurements測量, big Brownian布朗 motions運動,
266
647000
2000
長尺寸,大的布朗寧運動,
11:04
1.33.
267
649000
2000
1.33
11:06
Mathematical數學的 problem問題: how to prove證明 it?
268
651000
3000
一個數學問題來了:該如何證明它?
11:09
It took my friends朋友 20 years年份.
269
654000
3000
我的朋友曾花 20 年的時間研究
11:12
Three of them were having incomplete殘缺 proofs樣張.
270
657000
3000
他們三個人產出一個不完全的證明
11:15
They got together一起, and together一起 they had the proof證明.
271
660000
3000
他們聚在一起,一起證明它
11:19
So they got the big [Fields字段] medal勳章 in mathematics數學,
272
664000
3000
因此,他們獲得了這個領域的大獎
11:22
one of the three medals獎牌 that people have received收到
273
667000
2000
這些獲獎人當中,有一面獎牌
11:24
for proving證明 things which哪一個 I've seen看到
274
669000
3000
並不能合理地證明
11:27
without being存在 able能夠 to prove證明 them.
275
672000
3000
我所見到的東西
11:30
Now everybody每個人 asks me at one point or another另一個,
276
675000
3000
現在,每個人都問我
11:33
"How did it all start開始?
277
678000
2000
「這是怎麼開始的?
11:35
What got you in that strange奇怪 business商業?"
278
680000
3000
是什麼原因使你進入這個陌生的領域?」
11:38
What got you to be,
279
683000
2000
是什麼讓我
11:40
at the same相同 time, a mechanical機械 engineer工程師,
280
685000
2000
同時成為一個機械工程師、
11:42
a geographer地理學
281
687000
2000
又成為地理學家、
11:44
and a mathematician數學家 and so on, a physicist物理學家?
282
689000
2000
數學家、或物理學家等等?
11:46
Well actually其實 I started開始, oddly奇怪 enough足夠,
283
691000
3000
嗯,事實上,我是從一個非常怪異的地方開始的
11:49
studying研究 stock股票 market市場 prices價格.
284
694000
2000
我研究股票市場價格
11:51
And so here
285
696000
2000
在這
11:53
I had this theory理論,
286
698000
3000
我提過理論
11:56
and I wrote books圖書 about it --
287
701000
2000
我也寫了有關這方面的書籍
11:58
financial金融 prices價格 increments增量.
288
703000
2000
金融價格增長量
12:00
To the left you see data數據 over a long period.
289
705000
2000
在左邊,你們看到長期的數據
12:02
To the right, on top最佳,
290
707000
2000
在右邊,上方
12:04
you see a theory理論 which哪一個 is very, very fashionable時髦.
291
709000
3000
你們可以看到一個非常、非常流行的理論
12:07
It was very easy簡單, and you can write many許多 books圖書 very fast快速 about it.
292
712000
3000
它非常簡單,你可以用極短的時間寫下許多關於它的書籍
12:10
(Laughter笑聲)
293
715000
2000
(笑聲)
12:12
There are thousands數千 of books圖書 on that.
294
717000
3000
坊間有上千本這方面的著作
12:15
Now compare比較 that with real真實 price價錢 increments增量.
295
720000
3000
現在,比較真實的價格增加量,
12:18
Where are real真實 price價錢 increments增量?
296
723000
2000
哪裡是實際的價格增加量呢?
12:20
Well, these other lines
297
725000
2000
嗯,其他這些曲線
12:22
include包括 some real真實 price價錢 increments增量
298
727000
2000
包涵了一些真正的價格利潤
12:24
and some forgery偽造品 which哪一個 I did.
299
729000
2000
還有一些是我偽造的
12:26
So the idea理念 there was
300
731000
2000
所以,這裡的觀點是
12:28
that one must必須 be able能夠 to -- how do you say? --
301
733000
2000
人們必須能夠 --怎麼說呢? --
12:30
model模型 price價錢 variation變異.
302
735000
3000
把價格變化模組化
12:33
And it went really well 50 years年份 ago.
303
738000
3000
在五十年前,這觀點被認為相當有道理
12:36
For 50 years年份, people were sort分類 of pooh-poohing維尼poohing me
304
741000
3000
五十年來,人們多少有點輕視我的看法
12:39
because they could do it much, much easier更輕鬆.
305
744000
2000
因為他們可以用非常簡單的方式換算出來
12:41
But I tell you, at this point, people listened聽了 to me.
306
746000
3000
但我告訴你,在這一點上,人們聽信我
12:44
(Laughter笑聲)
307
749000
2000
(笑聲)
12:46
These two curves曲線 are averages均線:
308
751000
2000
這兩條曲線是平均值
12:48
Standard標準 & Poor較差的, the blue藍色 one;
309
753000
2000
藍色的那條是標準普爾(Standard & Poor)的曲線,
12:50
and the red one is Standard標準 & Poor's
310
755000
2000
而紅色的那條是標準普爾
12:52
from which哪一個 the five biggest最大 discontinuities間斷
311
757000
3000
根據其中 5 個最大的不連續性
12:55
are taken採取 out.
312
760000
2000
所畫出來的曲線
12:57
Now discontinuities間斷 are a nuisance滋擾,
313
762000
2000
現在,不連續造成了累贅
12:59
so in many許多 studies學習 of prices價格,
314
764000
3000
所以,在許多關於價格的研究上
13:02
one puts看跌期權 them aside在旁邊.
315
767000
2000
人們把它們擱在一旁,說:
13:04
"Well, acts行為 of God.
316
769000
2000
「嗯,這些是神的旨意(不可抗力的因素)
13:06
And you have the little nonsense廢話 which哪一個 is left.
317
771000
3000
於是留下了少許無意義的東西,
13:09
Acts行為 of God." In this picture圖片,
318
774000
3000
在這幅包涵不可抗力因素的照片中
13:12
five acts行為 of God are as important重要 as everything else其他.
319
777000
3000
五個不可抗力的現象就如同所有其他事物一樣重要
13:15
In other words,
320
780000
2000
換句話說,
13:17
it is not acts行為 of God that we should put aside在旁邊.
321
782000
2000
事實上,我們不應擱置那不可抗拒的現象不談
13:19
That is the meat, the problem問題.
322
784000
3000
那才是牛肉,是問題所在
13:22
If you master these, you master price價錢,
323
787000
3000
如果你熟悉價格和這些癥結
13:25
and if you don't master these, you can master
324
790000
2000
而且,如果你不熟悉這些癥結,你也可以試著
13:27
the little noise噪聲 as well as you can,
325
792000
2000
盡可能地了解小問題
13:29
but it's not important重要.
326
794000
2000
但它不重要
13:31
Well, here are the curves曲線 for it.
327
796000
2000
嗯,這裡有關於它的曲線
13:33
Now, I get to the final最後 thing, which哪一個 is the set
328
798000
2000
我來到最後這個
13:35
of which哪一個 my name名稱 is attached.
329
800000
2000
附有我名字的這組
13:37
In a way, it's the story故事 of my life.
330
802000
2000
在某種程度上,它是我一生的故事
13:39
My adolescence青春期 was spent花費
331
804000
2000
我青少年是在
13:41
during the German德語 occupation佔用 of France法國.
332
806000
2000
德軍佔領法國的期間度過的
13:43
Since以來 I thought that I might威力
333
808000
3000
我曾想,也許我可能會
13:46
vanish消失 within a day or a week,
334
811000
3000
在一天或一個星期內憑空消失
13:49
I had very big dreams.
335
814000
3000
所以,我有一些大夢想
13:52
And after the war戰爭,
336
817000
2000
戰後
13:54
I saw an uncle叔叔 again.
337
819000
2000
我和我叔叔相遇
13:56
My uncle叔叔 was a very prominent突出 mathematician數學家, and he told me,
338
821000
2000
我叔叔是個非常重要的數學家,他告訴我
13:58
"Look, there's a problem問題
339
823000
2000
「看,這裡有一個我二十五年來
14:00
which哪一個 I could not solve解決 25 years年份 ago,
340
825000
2000
都無法解決的問題,
14:02
and which哪一個 nobody沒有人 can solve解決.
341
827000
2000
沒有人可以解答
14:04
This is a construction施工 of a man named命名 [Gaston加斯頓] Julia朱莉婭
342
829000
2000
這是一個叫 [Gaston] Julia 和 [Pierre] Fatou
14:06
and [Pierre皮埃爾] Fatou法圖.
343
831000
2000
共同建構的問題
14:08
If you could
344
833000
2000
如果你可以,
14:10
find something new, anything,
345
835000
2000
發掘新的解決辦法,任何解決辦法,
14:12
you will get your career事業 made製作."
346
837000
2000
你的事業必定有所成就。」
14:14
Very simple簡單.
347
839000
2000
非常簡單
14:16
So I looked看著,
348
841000
2000
於是,我試試看
14:18
and like the thousands數千 of people that had tried試著 before,
349
843000
2000
就像許許多多前人試過的一樣
14:20
I found發現 nothing.
350
845000
3000
我什麽也沒找到
14:23
But then the computer電腦 came來了,
351
848000
2000
然而接著,電腦出現了
14:25
and I decided決定 to apply應用 the computer電腦,
352
850000
2000
我決定使用電腦
14:27
not to new problems問題 in mathematics數學 --
353
852000
3000
不是用在數學的新問題——
14:30
like this wiggle擺動 wiggle擺動, that's a new problem問題 --
354
855000
2000
比如這條擺動的曲線,這是新問題——
14:32
but to old problems問題.
355
857000
2000
而是,把電腦應用於舊的問題之上
14:34
And I went from what's called
356
859000
2000
我從那稱為實數(real number)
14:36
real真實 numbers數字, which哪一個 are points on a line,
357
861000
2000
的地方開始,這是一條線上的點
14:38
to imaginary假想, complex複雜 numbers數字,
358
863000
2000
到虛數、複數
14:40
which哪一個 are points on a plane平面,
359
865000
2000
這些是平面的數
14:42
which哪一個 is what one should do there,
360
867000
2000
也是人們必須去研究的事
14:44
and this shape形狀 came來了 out.
361
869000
2000
於是,這個圖形出現了
14:46
This shape形狀 is of an extraordinary非凡 complication並發症.
362
871000
3000
形狀極其複雜
14:49
The equation方程 is hidden there,
363
874000
2000
該方程式隱藏在那裡
14:51
z goes into z squared平方, plus c.
364
876000
3000
z 進入z 平方,加上 c
14:54
It's so simple簡單, so dry.
365
879000
2000
它是如此簡單、如此枯燥、
14:56
It's so uninteresting枯燥.
366
881000
2000
如此無趣
14:58
Now you turn the crank曲柄 once一旦, twice兩次:
367
883000
3000
現在,你轉動曲軸兩次
15:01
twice兩次,
368
886000
3000
兩次
15:04
marvels奇蹟 come out.
369
889000
2000
奇蹟就出現了。
15:06
I mean this comes out.
370
891000
2000
我指的是,出現了這個
15:08
I don't want to explain說明 these things.
371
893000
2000
我不想解釋這些東西
15:10
This comes out. This comes out.
372
895000
2000
出現了這個,出現了這個
15:12
Shapes形狀 which哪一個 are of such這樣 complication並發症,
373
897000
2000
出現了如此這般複雜的形狀
15:14
such這樣 harmony和諧 and such這樣 beauty美女.
374
899000
3000
它們具有如此的和諧與美感
15:17
This comes out
375
902000
2000
出現了這個
15:19
repeatedly反复, again, again, again.
376
904000
2000
它們一而再,再而三地重複著
15:21
And that was one of my major重大的 discoveries發現,
377
906000
2000
這就是過去我最主要的發現之一
15:23
to find that these islands島嶼 were the same相同
378
908000
2000
我發現這些島嶼是相同的
15:25
as the whole整個 big thing, more or less.
379
910000
2000
或多或少,就如同它較大的整體
15:27
And then you get these
380
912000
2000
於是,你在所有地方得到這些
15:29
extraordinary非凡 baroque巴洛克 decorations all over the place地點.
381
914000
3000
非凡的巴洛克式裝飾
15:32
All that from this little formula,
382
917000
3000
它們全都來自這個小小的方程式
15:35
which哪一個 has whatever隨你, five symbols符號 in it.
383
920000
3000
這方程式有五種符號
15:38
And then this one.
384
923000
2000
接著是這個
15:40
The color顏色 was added添加 for two reasons原因.
385
925000
2000
加上兩種顏色的原因是
15:42
First of all, because these shapes形狀
386
927000
2000
首先,因為這些圖形
15:44
are so complicated複雜
387
929000
3000
是如此複雜
15:47
that one couldn't不能 make any sense of the numbers數字.
388
932000
3000
以致於人們無法辨識任何數目
15:50
And if you plot情節 them, you must必須 choose選擇 some system系統.
389
935000
3000
如果你要繪製它們,你必須選擇某些系統
15:53
And so my principle原理 has been
390
938000
2000
所以,我的原則是
15:55
to always present當下 the shapes形狀
391
940000
3000
永遠以不同的顏色
15:58
with different不同 colorings色素
392
943000
2000
呈現這些圖形
16:00
because some colorings色素 emphasize注重 that,
393
945000
2000
因為某些顏色強調某些部份
16:02
and others其他 it is that or that.
394
947000
2000
而其他的強調這,或強調那
16:04
It's so complicated複雜.
395
949000
2000
實在真的很複雜
16:06
(Laughter笑聲)
396
951000
2000
(笑聲)
16:08
In 1990, I was in Cambridge劍橋, U.K.
397
953000
2000
1990 年,我在英國劍橋
16:10
to receive接收 a prize from the university大學,
398
955000
3000
獲得大學一個獎項
16:13
and three days later後來,
399
958000
2000
三天後
16:15
a pilot飛行員 was flying飛行 over the landscape景觀 and found發現 this thing.
400
960000
3000
有位駕駛飛越田野上空,發現了這東西
16:18
So where did this come from?
401
963000
2000
這是來自哪裡呢?
16:20
Obviously明顯, from extraterrestrials外星人.
402
965000
2000
很顯然,這來自外星人
16:22
(Laughter笑聲)
403
967000
3000
(笑聲)
16:25
Well, so the newspaper報紙 in Cambridge劍橋
404
970000
2000
嗯,所以劍橋的報紙
16:27
published發表 an article文章 about that "discovery發現"
405
972000
2000
登載了關於那「發現」的文章
16:29
and received收到 the next下一個 day
406
974000
2000
隔天後,他們收到了
16:31
5,000 letters from people saying,
407
976000
2000
5000 封信,人們在信上說:
16:33
"But that's simply只是 a Mandelbrot曼德爾布羅 set very big."
408
978000
3000
「這只不過是一個非常大的 Mandelbrot 圖組罷了。」
16:37
Well, let me finish.
409
982000
2000
嗯,讓我這麼結束吧
16:39
This shape形狀 here just came來了
410
984000
2000
這兒的圖形,只是來自
16:41
out of an exercise行使 in pure mathematics數學.
411
986000
2000
純數學的演算
16:43
Bottomless萬丈 wonders奇蹟 spring彈簧 from simple簡單 rules規則,
412
988000
3000
深不可測的奇觀,源自簡單的規則
16:46
which哪一個 are repeated重複 without end結束.
413
991000
3000
它們無止無盡地反復
16:49
Thank you very much.
414
994000
2000
謝謝大家
16:51
(Applause掌聲)
415
996000
11000
(掌聲)
Translated by Geoff Chen
Reviewed by Wang-Ju Tsai

▲Back to top

ABOUT THE SPEAKER
Benoit Mandelbrot - Mathematician
Benoit Mandelbrot's work led the world to a deeper understanding of fractals, a broad and powerful tool in the study of roughness, both in nature and in humanity's works.

Why you should listen

Studying complex dynamics in the 1970s, Benoit Mandelbrot had a key insight about a particular set of mathematical objects: that these self-similar structures with infinitely repeating complexities were not just curiosities, as they'd been considered since the turn of the century, but were in fact a key to explaining non-smooth objects and complex data sets -- which make up, let's face it, quite a lot of the world. Mandelbrot coined the term "fractal" to describe these objects, and set about sharing his insight with the world.

The Mandelbrot set (expressed as z² + c) was named in Mandelbrot's honor by Adrien Douady and John H. Hubbard. Its boundary can be magnified infinitely and yet remain magnificently complicated, and its elegant shape made it a poster child for the popular understanding of fractals. Led by Mandelbrot's enthusiastic work, fractal math has brought new insight to the study of pretty much everything, from the behavior of stocks to the distribution of stars in the universe.

Benoit Mandelbrot appeared at the first TED in 1984, and returned in 2010 to give an overview of the study of fractals and the paradigm-flipping insights they've brought to many fields. He died in October 2010 at age 85. Read more about his life on NYBooks.com >>

More profile about the speaker
Benoit Mandelbrot | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee