ABOUT THE SPEAKER
Peter Norvig - Computer scientist
Peter Norvig is a leading American computer scientist, expert on artificial intelligence and the Director of Research at Google Inc.

Why you should listen

Peter Norvig is a computer scientist and expert in both artificial intelligence and online search. Currently the Director of Research at Google Inc., Norvig was responsible for maintaining and improving the engine's core web search algorithms from 2002 to 2005. Prior to his work at Google, Norvig was NASA's chief computer scientist.

A fellow of the American Association for Artificial Intelligence and the author of the book Artificial Intelligence: A Modern Approach, Norvig (along with Sebastian Thrun) taught the Stanford University class "Introduction to Artificial Intelligence," which was made available to anyone in the world. More than 160,000 students from 209 countries enrolled.

Norvig is also known for penning the world's longest palindromic sentence.

More profile about the speaker
Peter Norvig | Speaker | TED.com
TED2012

Peter Norvig: The 100,000-student classroom

Peter Norvig: Učilnica s 100.000 študenti

Filmed:
1,166,568 views

Jeseni 2011 sta Peter Norvig in Sebastjan Thrun izvedla študijski letnik o umetni intiligenci pred 175 študenti v predavalnici in več kot 100.000 preko spletnega prenosa. Peter nam pove več o tem, kaj se je naučil o globalni učilnici.
- Computer scientist
Peter Norvig is a leading American computer scientist, expert on artificial intelligence and the Director of Research at Google Inc. Full bio

Double-click the English transcript below to play the video.

00:17
EveryoneVsi is bothoboje a learneručenec
0
1135
1976
Vsakdo je oboje: učenec
00:19
and a teacheručitelj.
1
3111
1512
in učitelj.
00:20
This is me beingbiti inspirednavdihnjen
2
4623
2456
To sem jaz, ko me je navdahnila
00:22
by my first tutormentor,
3
7079
1191
prva tutorka,
00:24
my mommama,
4
8270
945
moja mama.
00:25
and this is me teachingpoučevanje
5
9215
2623
In to sem jaz med poučevanjem
00:27
IntroductionUvod to ArtificialUmetno IntelligenceInteligenca
6
11838
1953
o umetni inteligenci
00:29
to 200 studentsštudenti
7
13791
1240
pred 200 študenti
00:30
at StanfordStanford UniversityUniverza.
8
15031
1272
na Univerzi Stanford.
00:32
Now the studentsštudenti and I
9
16303
1456
Vsi, študentje in jaz,
00:33
enjoyeduživali the classrazred,
10
17759
1176
smo uživali.
00:34
but it occurredprišlo to me
11
18935
1416
Toda opazil sem,
00:36
that while the subjectpredmet matterzadevo
12
20351
1711
da je predmet poučevanja
00:37
of the classrazred is advancednapredno
13
22062
1289
napreden
00:39
and modernmoderno,
14
23351
688
in sodoben,
00:39
the teachingpoučevanje technologytehnologijo isn't.
15
24039
2319
medtem ko tehnologija poučevanja ni.
00:42
In factdejstvo, I use basicallyv bistvu
16
26358
2336
Pravzaprav sem uporabil
00:44
the sameenako technologytehnologijo as
17
28694
2370
enako tehnologijo,
00:46
this 14th-centurystoletje classroomučilnica.
18
31064
2630
kot je bila na voljo v učilnici v 14. stoletju.
00:49
NoteOpomba the textbookučbenik,
19
33694
2800
Opaženi: učbenik,
00:52
the sagežajbelj on the stagestopnja,
20
36494
2944
obraz za katedrom
00:55
and the sleepingspanje guy
21
39438
1899
in speči tip
00:57
in the back. (LaughterSmeh)
22
41337
901
v ozadju. (Smeh)
00:58
Just like todaydanes.
23
42238
2937
Tako kot danes.
01:01
So my co-teacherco-učitelja,
24
45175
3111
S kolegom Sebastianom,
01:04
SebastianSebastian ThrunThrun, and I thought,
25
48286
1640
prav tako predavateljem, naju je spreletelo:
01:05
there mustmoraš be a better way.
26
49926
1774
mora obstajati boljši pristop.
01:07
We challengedizpodbijano ourselvessami
27
51700
1654
Sprejela sva nov izziv
01:09
to createustvarite an onlinena spletu classrazred
28
53354
1291
in v spletnem okolju postavila predavanje,
01:10
that would be equalenako or better
29
54645
1631
ki bo enako ali še bolj kakovostno kot
01:12
in qualitykakovost to our StanfordStanford classrazred,
30
56276
2336
najine lekcije na Stanfordu,
01:14
but to bringprinesi it to anyonekdorkoli
31
58612
2210
hkrati pa dostopno komurkoli in
01:16
in the worldsvet for freeprost.
32
60822
1630
kjerkoli po svetu brezplačno.
01:18
We announcednapovedal the classrazred on JulyJulija 29thth,
33
62452
2568
Predavanje sva napovedala 29. julija
01:20
and withinznotraj two weekstednih, 50,000 people
34
65020
3209
in v 2 tednih se je prijavilo
01:24
had signedpodpisano up for it.
35
68229
1407
50.000 ljudi.
01:25
And that grewnaraščal to 160,000 studentsštudenti
36
69636
3105
Število je nato naraslo na 160.000 prijavljenih
01:28
from 209 countriesdržave.
37
72741
2064
študentov iz 209 držav.
01:30
We were thrillednavdušeni to have
38
74805
1808
Ob takem občinstvu
01:32
that kindvrste of audienceobčinstvo,
39
76613
1121
sva bila vznemirjena,
01:33
and just a bitbit terrifiedprestrašen that we
40
77734
2639
pa tudi malce prestrašena,
01:36
hadn'tni finishedkončal preparingpriprava the classrazred yetše. (LaughterSmeh)
41
80373
2311
ker še nisva povsem dokončala vsebine predavanja.
01:38
So we got to work.
42
82684
1612
Lotila sva se dela.
01:40
We studiedštudiral what othersdrugi had doneKončano,
43
84296
1636
Preučila sva, kar so naredili že drugi,
01:41
what we could copykopirati and what we could changesprememba.
44
85932
2323
kaj od tega bi lahko uporabila in kaj spremenila.
01:44
BenjaminBenjamin BloomCvet had showedpokazala
45
88255
2661
Benjamin Bloom je dokazal,
01:46
that one-on-oneena na ena tutoringtutorstvo worksdela bestnajboljši,
46
90916
1809
da je učenje 1:1 najbolj učinkovito.
01:48
so that's what we triedposkušal to emulatetekmovati,
47
92725
2128
To sva želela posnemati;
01:50
like with me and my mommama,
48
94853
1440
kot nekoč jaz in moja mama,
01:52
even thoughčeprav we knewvedel
49
96293
1505
pa čeprav sva se zavedala,
01:53
it would be one-on-thousandsena-na-tisoč.
50
97798
1918
da bo pravzaprav šlo za odnos 1:na tisoče ljudi.
01:55
Here, an overheadz vrha videovideo camerakamera
51
99716
2201
Tukaj me kamera snema,
01:57
is recordingsnemanje me as I'm talkinggovoriti
52
101917
1832
medtem ko govorim in
01:59
and drawingrisanje on a piecekos of paperpapir.
53
103749
1679
rišem na list papirja.
02:01
A studentštudent said, "This classrazred feltčutil
54
105428
2409
Nek študent je izjavil, da se je med predavanjem počutil,
02:03
like sittingsedi in a barbar
55
107837
1152
kot da bi sedel v baru
02:04
with a really smartpameten friendprijatelj
56
108989
1479
v družbi izredno pametnega prijatelja,
02:06
who'skdo je explainingrazlaga something
57
110468
1204
ki mu razlaga še neosvojeno
02:07
you haven'tne graspedzgrabila, but are about to."
58
111672
2301
učno snov.
02:09
And that's exactlytočno what we were aimings ciljem for.
59
113973
2116
To je bil odziv, ki sva si ga želela.
02:11
Now, from KhanKhan AcademyAkademija, we saw
60
116089
2788
Na Akademiji Khan smo ugotovili,
02:14
that shortkratek 10-minute-minut videosvideo posnetke
61
118877
1824
da kratki, 10-minutni posnetki,
02:16
workeddelal much better than tryingposkušam
62
120701
1776
učinkujejo mnogo bolje, kot če bi
02:18
to recordzapis an hour-longenourni lecturepredavanje
63
122477
2071
poskušali posneti in
02:20
and put it on the small-formatmalega formata screenzaslon.
64
124548
2417
predvajati enourno predavanje.
02:22
We decidedodločil to go even shorterkrajši
65
126965
2192
Midva sva se odločila, da posnetke narediva še krajše
02:25
and more interactiveinteraktivno.
66
129157
1648
in še bolj interaktivne.
02:26
Our typicaltipično videovideo is two minutesminut,
67
130805
2247
Najin tipičen video je
02:28
sometimesvčasih shorterkrajši, never more
68
133052
1752
dolg od 2 do 6 minut.
02:30
than sixšest, and then we pausepavza for
69
134804
2689
Zastavila sva anketno vprašanje:
02:33
a quizkviz questionvprašanje, to make it
70
137493
1367
kako naj še pristopimo,
02:34
feel like one-on-oneena na ena tutoringtutorstvo.
71
138860
1878
da bodo predavanja občutena kot učenje v živo?
02:36
Here, I'm explainingrazlaga how a computerračunalnik usesuporabe
72
140738
2402
Tu razlagam, kako računalnik uporablja
02:39
the grammarslovnica of Englishangleščina
73
143140
1248
angleško slovnico
02:40
to parserazčleniti sentenceskazni, and here,
74
144388
2177
in tvori povedi. Tukaj
02:42
there's a pausepavza and the studentštudent
75
146565
2064
pa je premor, v katerem morajo študenti
02:44
has to reflectodražajo, understandrazumeti what's going on
76
148629
2237
reflektirati, razumeti, kaj se dogaja
02:46
and checkpreveri the right boxesškatle
77
150866
1640
in označiti prava polja,
02:48
before they can continuenadaljuj.
78
152506
1417
preden lahko nadaljujejo.
02:49
StudentsŠtudenti learnučiti se bestnajboljši when
79
153923
2448
Študenti se najbolje učijo takrat,
02:52
they're activelyaktivno practicingprakticiranje.
80
156371
1248
ko aktivno vadijo.
02:53
We wanted to engagesodelovati them, to have them grappleGrabež
81
157619
2296
Želela sva jih angažirati, da se spoprimejo
02:55
with ambiguitydvoumnost and guidevodnik them to synthesizesintetizirati
82
159915
2968
z dvoumnostjo, jih voditi k
02:58
the keyključ ideasideje themselvessami.
83
162883
1665
spajanju ključnih idej.
03:00
We mostlyvečinoma avoidizogibajte se questionsvprašanja
84
164548
1712
Večinoma sva se izogibala nalog,
03:02
like, "Here'sTukaj je a formulaformula, now
85
166260
1711
kot so: tu je formula,
03:03
tell me the valuevrednost of Y
86
167971
1075
določi vrednost Y,
03:04
when X is equalenako to two."
87
169046
1212
če je X=2.
03:06
We preferredprednost open-endedodprta questionsvprašanja.
88
170258
1817
Namesto tega sva se odločila za odprta vprašanja.
03:07
One studentštudent wrotenapisal, "Now I'm seeingvidenje
89
172075
3178
Nek študent je zapisal: »Zdaj
03:11
BayesBayes networksomrežij and examplesprimeri of
90
175253
1862
Bayesove mreže in primere
03:13
gameigro theoryteorija everywherepovsod I look."
91
177115
1568
teorije iger vidim, kamorkoli pogledam.«
03:14
And I like that kindvrste of responseodziv.
92
178683
1738
Tak odgovor mi je bil všeč,
03:16
That's just what we were going for.
93
180421
1806
prav to je bil najin cilj.
03:18
We didn't want studentsštudenti to memorizeZapomni si the formulasformule;
94
182227
2194
Nisva namreč želela, da si študenti zapomnijo formule,
03:20
we wanted to changesprememba the way
95
184421
1190
želela sva, da spremenijo
03:21
they lookedpogledal at the worldsvet.
96
185611
1090
svoj pogled na svet.
03:22
And we succeededuspelo.
97
186701
1326
In uspelo nama je,
03:23
Or, I should say, the studentsštudenti succeededuspelo.
98
188027
2400
bolje rečeno: uspelo je njim.
03:26
And it's a little bitbit ironicIronično
99
190427
1919
Malce ironično je,
03:28
that we setnastavite about to disruptmoti traditionaltradicionalno educationizobraževanje,
100
192346
2913
da sva želela pretresti tradicionalne načine poučevanja,
03:31
and in doing so, we endedkončal up
101
195259
2016
na koncu pa najina
03:33
makingizdelavo our onlinena spletu classrazred
102
197275
1584
spletna predavanja bolj kot
03:34
much more like a traditionaltradicionalno collegekolegij classrazred
103
198859
2327
spletnim učnim orodjem pravzaprav približala tradicionalnim,
03:37
than other onlinena spletu classesrazredov.
104
201186
1841
kakršna uporabljajo na fakultetah.
03:38
MostVečina onlinena spletu classesrazredov, the videosvideo posnetke are always availablena voljo.
105
203027
3215
V večini spletnih učilnic so videoposnetki vedno na voljo.
03:42
You can watch them any time you want.
106
206242
1817
Gledate jih lahko, kadarkoli si zaželite.
03:43
But if you can do it any time,
107
208059
2287
Če jih lahko gledate kadarkoli,
03:46
that meanssredstva you can do it tomorrowjutri,
108
210346
1505
jih lahko tudi jutri.
03:47
and if you can do it tomorrowjutri,
109
211851
1408
Toda če jih lahko jutri,
03:49
well, you maylahko not ever
110
213259
2162
jih morda
03:51
get around to it. (LaughterSmeh)
111
215421
1758
ne boste nikoli. (Smeh)
03:53
So we broughtprinesel back the innovationinovacije
112
217179
2192
Zato sva oživila "inovacijo"
03:55
of havingimeti duedolžan datesdatumi. (LaughterSmeh)
113
219371
2087
rokov oddaje. (Smeh)
03:57
You could watch the videosvideo posnetke
114
221458
1312
Video so si lahko ogledali
03:58
any time you wanted duringmed the weekteden,
115
222770
1912
katerikoli dan,
04:00
but at the endkonec of the weekteden,
116
224682
1155
ob koncu tedna pa so morali
04:01
you had to get the homeworkDomača naloga doneKončano.
117
225837
1717
opraviti tudi domačo nalogo.
04:03
This motivatedmotivirani the studentsštudenti to keep going, and it alsotudi
118
227554
1913
To je motiviralo študente, da so ostajali dejavni,
04:05
meantpomeni that everybodyvsi was workingdelo
119
229467
2856
poleg tega pa so se istočasno
04:08
on the sameenako thing at the sameenako time,
120
232323
1518
vsi ukvarjali z isto snovjo.
04:09
so if you wentšla into a discussiondiskusija forumForum,
121
233841
1497
Če si se prijavil v forum za diskusijo,
04:11
you could get an answerodgovor from a peerpeer withinznotraj minutesminut.
122
235338
2704
si odgovor dobil v nekaj minutah.
04:13
Now, I'll showshow you some of the forumsforumi, mostnajbolj of whichki
123
238042
2939
Zdaj vam bom pokazal nekaj teh forumov,
04:16
were self-organizedself-organizirana by the studentsštudenti themselvessami.
124
240981
2766
večinoma nastalih v organizaciji študentov.
04:19
From DaphneDaphne KollerKoller and AndrewAndrew NgNG, we learnednaučili
125
243747
3224
Ob dvojcu Daphne Koller in Andrew Ng smo spoznali
04:22
the conceptkoncept of "flippinglahkota" the classroomučilnica.
126
246971
1996
koncept prevrnjene učilnice.
04:24
StudentsŠtudenti watchedgledal the videosvideo posnetke
127
248967
1295
Študentje so si samostojno
04:26
on theirnjihovi ownlastno, and then they
128
250262
1588
ogledovali videoposnetke,
04:27
come togetherskupaj to discussrazpravljali them.
129
251850
1710
nato pa o njih skupaj debatirali.
04:29
From EricEric MazurMazur, I learnednaučili about peerpeer instructionnavodila,
130
253560
3157
Eric Mazur me je naučil,
04:32
that peersvrstniki can be the bestnajboljši teachersučitelji,
131
256717
2624
da so vrstniki najboljši inštruktorji,
04:35
because they're the onestiste
132
259341
1432
ker se še spomnijo,
04:36
that rememberZapomni si what it's like to not understandrazumeti.
133
260773
2848
kako je, če nečesa ne razumeš.
04:39
SebastianSebastian and I have forgottenpozabljen some of that.
134
263621
2681
S Sebastianom sva to deloma pozabila.
04:42
Of courseseveda, we couldn'tni mogel have
135
266302
2399
Seveda v učilnici
04:44
a classroomučilnica discussiondiskusija with
136
268701
1632
z več deset tisoč študenti
04:46
tensdeset of thousandstisoče of studentsštudenti,
137
270333
1546
ni šlo brez diskusije,
04:47
so we encouragedspodbuja and nurturedneguje these onlinena spletu forumsforumi.
138
271879
3486
zato smo te spletne forume podprli in negovali.
04:51
And finallykončno, from TeachPoučevanje For AmericaAmerika,
139
275365
3048
Nazadnje še Teach For America,
04:54
I learnednaučili that a classrazred is not
140
278413
1481
kjer sem se naučil, da primarni cilj
04:55
primarilypredvsem about informationinformacije.
141
279894
1496
poučevanja ni podajanje informacije.
04:57
More importantpomembno is motivationmotivacija and determinationodločnost.
142
281390
2831
Bolj pomembni sta motivacija in odločenost.
05:00
It was crucialključnega pomena that the studentsštudenti see
143
284221
1840
Postalo je ključno, da študentje uvidijo,
05:01
that we're workingdelo hardtežko for them and
144
286061
1800
da trdo delava zanje,
05:03
they're all supportingpodpora eachvsak other.
145
287861
1409
oni pa se med seboj podpirajo.
05:05
Now, the classrazred rantekel 10 weekstednih,
146
289270
2968
Predavanje je trajalo 10 tednov
05:08
and in the endkonec, about halfpol of the 160,000 studentsštudenti watchedgledal
147
292238
3911
in na koncu si je približno 80.000 študentov v povprečju ogledovalo
05:12
at leastvsaj one videovideo eachvsak weekteden,
148
296149
1563
po en video tedensko.
05:13
and over 20,000 finishedkončal all the homeworkDomača naloga,
149
297712
2693
Več kot 20.000 jih je dokončalo vse domače naloge,
05:16
puttingdajanje in 50 to 100 hoursure.
150
300405
1664
v kar so vložili od 50 do 100 ur dela.
05:17
They got this statementizjavo of accomplishmentdosežek.
151
302069
1553
Prejeli so potrdilo o uspešnem zaključku predavanj.
05:19
So what have we learnednaučili?
152
303622
2119
Kaj sva se torej naučila?
05:21
Well, we triedposkušal some oldstar ideasideje
153
305741
2816
Poskusila sva z nekaj starimi in
05:24
and some newnovo and put them togetherskupaj,
154
308557
1657
nekaj novimi idejami, jih združila.
05:26
but there are more ideasideje to try.
155
310214
2082
Seveda obstaja še veliko drugih idej, vrednih poskušanja.
05:28
Sebastian'sSebastianu teachingpoučevanje anotherdrugo classrazred now.
156
312296
1814
Sebastian predava prav v tem času,
05:30
I'll do one in the fallpadec.
157
314110
1368
jaz bom poučeval jeseni.
05:31
StanfordStanford CourseraCoursera, UdacityUdacity, MITxMITx
158
315478
3760
Stanford Coursera, Udacity, MITx
05:35
and othersdrugi have more classesrazredov comingprihajajo.
159
319238
2271
in ostali si prav tako obetajo novih predavanj.
05:37
It's a really excitingvznemirljivo time.
160
321509
1488
Vznemirljivi časi so!
05:38
But to me, the mostnajbolj excitingvznemirljivo
161
322997
1472
Zame pa so najbolj vznemirljivi
05:40
partdel of it is the datapodatkov that we're gatheringzbiranje.
162
324469
2976
podatki, ki jih zbiramo.
05:43
We're gatheringzbiranje thousandstisoče
163
327445
2696
Gre za tisoče interakcij
05:46
of interactionsinterakcije perna studentštudent perna classrazred,
164
330141
1656
med študenti in znotraj predavanj,
05:47
billionsmilijarde of interactionsinterakcije altogetherskupaj,
165
331797
2208
skupaj na bilijone interakcij,
05:49
and now we can startZačni analyzinganaliziranje that,
166
334005
2504
ki jih lahko tudi analiziramo.
05:52
and when we learnučiti se from that,
167
336509
1464
Ko se bomo od tega česa naučili
05:53
do experimentationsexperimentations,
168
337973
1241
in eksperimentirali,
05:55
that's when the realresnično revolutionrevolucija will come.
169
339214
2240
bo nastopila prava revolucija.
05:57
And you'llboš be ablesposoben to see the resultsrezultate from
170
341454
2776
Zaznali boste rezultate
06:00
a newnovo generationgeneracije of amazingneverjetno studentsštudenti.
171
344230
2263
nove generacije osupljivih študentov.
06:02
(ApplauseAplavz)
172
346493
2253
(Aplavz)
Translated by Ales Rosina
Reviewed by Tilen Pigac - EFZG

▲Back to top

ABOUT THE SPEAKER
Peter Norvig - Computer scientist
Peter Norvig is a leading American computer scientist, expert on artificial intelligence and the Director of Research at Google Inc.

Why you should listen

Peter Norvig is a computer scientist and expert in both artificial intelligence and online search. Currently the Director of Research at Google Inc., Norvig was responsible for maintaining and improving the engine's core web search algorithms from 2002 to 2005. Prior to his work at Google, Norvig was NASA's chief computer scientist.

A fellow of the American Association for Artificial Intelligence and the author of the book Artificial Intelligence: A Modern Approach, Norvig (along with Sebastian Thrun) taught the Stanford University class "Introduction to Artificial Intelligence," which was made available to anyone in the world. More than 160,000 students from 209 countries enrolled.

Norvig is also known for penning the world's longest palindromic sentence.

More profile about the speaker
Peter Norvig | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee