ABOUT THE SPEAKER
Arthur Benjamin - Mathemagician
Using daring displays of algorithmic trickery, lightning calculator and number wizard Arthur Benjamin mesmerizes audiences with mathematical mystery and beauty.

Why you should listen

Arthur Benjamin makes numbers dance. In his day job, he's a professor of math at Harvey Mudd College; in his other day job, he's a "Mathemagician," taking the stage in his tuxedo to perform high-speed mental calculations, memorizations and other astounding math stunts. It's part of his drive to teach math and mental agility in interesting ways, following in the footsteps of such heroes as Martin Gardner.

Benjamin is the co-author, with Michael Shermer, of Secrets of Mental Math (which shares his secrets for rapid mental calculation), as well as the co-author of the MAA award-winning Proofs That Really Count: The Art of Combinatorial Proof. For a glimpse of his broad approach to math, see the list of research talks on his website, which seesaws between high-level math (such as his "Vandermonde's Determinant and Fibonacci SAWs," presented at MIT in 2004) and engaging math talks for the rest of us ("An Amazing Mathematical Card Trick").

More profile about the speaker
Arthur Benjamin | Speaker | TED.com
TEDGlobal 2013

Arthur Benjamin: The magic of Fibonacci numbers

Arthur Benjamin: 費波那西數列的魔力

Filmed:
7,057,274 views

數學是邏輯的、功能性的,並且簡直是......棒的。數學魔術師 Arthur Benjamin 探索了怪異又奇妙的費波那西數列的隱藏特性(並且提醒你,數學也是可以鼓舞人心的!)。
- Mathemagician
Using daring displays of algorithmic trickery, lightning calculator and number wizard Arthur Benjamin mesmerizes audiences with mathematical mystery and beauty. Full bio

Double-click the English transcript below to play the video.

00:12
So why do we learn學習 mathematics數學?
0
613
3039
我們為什麼要學數學?
00:15
Essentially實質上, for three reasons原因:
1
3652
2548
主要有三個原因:
00:18
calculation計算,
2
6200
1628
計算
00:19
application應用,
3
7828
1900
應用
00:21
and last, and unfortunately不幸 least最小
4
9728
2687
最後,不幸地,也是最不重要的,
00:24
in terms條款 of the time we give it,
5
12415
2105
就我們所給予它的時間來看,
00:26
inspiration靈感.
6
14520
1922
靈感。
00:28
Mathematics數學 is the science科學 of patterns模式,
7
16442
2272
數學是规律的科學,
00:30
and we study研究 it to learn學習 how to think logically邏輯,
8
18714
3358
而我們學習數學是為了學習怎樣邏輯地,
00:34
critically危重 and creatively創造性,
9
22072
2527
批評地和有創造性地思考,
00:36
but too much of the mathematics數學
that we learn學習 in school學校
10
24599
2926
但是,太多我們在學校學的數學
00:39
is not effectively有效 motivated動機,
11
27525
2319
並沒有效地激勵學生思考
00:41
and when our students學生們 ask,
12
29844
1425
所以當學生問我們,
00:43
"Why are we learning學習 this?"
13
31269
1675
“我們為什麼要學這個?”
00:44
then they often經常 hear that they'll他們會 need it
14
32944
1961
他們會聽到(我們說)因為下一節是數學課
00:46
in an upcoming即將到來 math數學 class or on a future未來 test測試.
15
34905
3265
或者將來會有考試,他們需要這個。
00:50
But wouldn't不會 it be great
16
38170
1802
可是,如果
00:51
if every一切 once一旦 in a while we did mathematics數學
17
39972
2518
偶爾我們學數學
00:54
simply只是 because it was fun開玩笑 or beautiful美麗
18
42490
2949
僅僅是因為數學很有趣或迷人,
00:57
or because it excited興奮 the mind心神?
19
45439
2090
或者因為它激發思想,不是很好嗎?
00:59
Now, I know many許多 people have not
20
47529
1722
我知道很多人都還沒有
01:01
had the opportunity機會 to see how this can happen發生,
21
49251
2319
機會去看到數學如何可以有趣,
01:03
so let me give you a quick example
22
51570
1829
所以讓我用我最喜歡的一組數字,
01:05
with my favorite喜愛 collection採集 of numbers數字,
23
53399
2341
來給你舉個小小的例子,
01:07
the Fibonacci斐波那契 numbers數字. (Applause掌聲)
24
55740
2728
費波那西數。(鼓掌)
01:10
Yeah! I already已經 have Fibonacci斐波那契 fans球迷 here.
25
58468
2052
哇,這裡已經有費波那西數的愛好者了。
01:12
That's great.
26
60520
1316
不錯。
01:13
Now these numbers數字 can be appreciated讚賞
27
61836
2116
(我們可以)從很多個方面來
01:15
in many許多 different不同 ways方法.
28
63952
1878
欣賞這組數字。
01:17
From the standpoint立場 of calculation計算,
29
65830
2709
從計算上來看,
01:20
they're as easy簡單 to understand理解
30
68539
1677
它們非常易懂
01:22
as one plus one, which哪一個 is two.
31
70216
2554
比如,1加1,是2.
01:24
Then one plus two is three,
32
72770
2003
1加2是3,
01:26
two plus three is five, three plus five is eight,
33
74773
3014
2加3是5,3加5是8,
01:29
and so on.
34
77787
1525
等等。
01:31
Indeed確實, the person we call Fibonacci斐波那契
35
79312
2177
事實上,我們稱做“費波那西”的這個人
01:33
was actually其實 named命名 Leonardo萊昂納多 of Pisa比薩,
36
81489
3180
是比薩的莱昂纳多,
01:36
and these numbers數字 appear出現 in his book "Liber萊博 Abaci算盤,"
37
84669
3053
而這些數字是在他的“計算之書”中描述的,
01:39
which哪一個 taught the Western西 world世界
38
87722
1650
這本書教授了西方世界
01:41
the methods方法 of arithmetic算術 that we use today今天.
39
89372
2827
我們今天所使用的算術方法。
01:44
In terms條款 of applications應用,
40
92199
1721
從應用上來看,
01:45
Fibonacci斐波那契 numbers數字 appear出現 in nature性質
41
93920
2183
費波那西數讓人驚訝地
01:48
surprisingly出奇 often經常.
42
96103
1857
頻繁出現在自然界裡。
01:49
The number of petals花瓣 on a flower
43
97960
1740
花瓣的數目
01:51
is typically一般 a Fibonacci斐波那契 number,
44
99700
1862
通常是一個費波那西數字,
01:53
or the number of spirals螺旋 on a sunflower向日葵
45
101562
2770
或向日葵上、鳳梨上的螺旋數
01:56
or a pineapple菠蘿
46
104332
1411
01:57
tends趨向 to be a Fibonacci斐波那契 number as well.
47
105743
2394
往往也是費波那西數字。
02:00
In fact事實, there are many許多 more
applications應用 of Fibonacci斐波那契 numbers數字,
48
108137
3503
事實上,費波那西數有更多的應用,
02:03
but what I find most inspirational勵志 about them
49
111640
2560
但我發現最鼓舞人心的
02:06
are the beautiful美麗 number patterns模式 they display顯示.
50
114200
2734
是它們所顯示的漂亮的數字规律。
02:08
Let me show顯示 you one of my favorites最愛.
51
116934
2194
讓我給你看看我的最愛之一。
02:11
Suppose假設 you like to square廣場 numbers數字,
52
119128
2221
假設你喜歡平方數,
02:13
and frankly坦率地說, who doesn't? (Laughter笑聲)
53
121349
2675
坦率地說,誰不喜歡?(笑聲)
02:16
Let's look at the squares廣場
54
124040
2240
讓我們看看頭幾個
02:18
of the first few少數 Fibonacci斐波那契 numbers數字.
55
126280
1851
費波那西數的平方。
02:20
So one squared平方 is one,
56
128131
2030
1的平方是1,
02:22
two squared平方 is four, three squared平方 is nine,
57
130161
2317
2 的平方是4,3的平方是9,
02:24
five squared平方 is 25, and so on.
58
132478
3173
5 的平方是 25,依此類推。
02:27
Now, it's no surprise
59
135651
1901
可想而知,
02:29
that when you add consecutive連續 Fibonacci斐波那契 numbers數字,
60
137552
2828
當你把相鄰的两個費波那西數加起來時,
02:32
you get the next下一個 Fibonacci斐波那契 number. Right?
61
140380
2032
會得到下一個費波那西數。對吧?
02:34
That's how they're created創建.
62
142412
1395
這就是它們如何被定義的。
02:35
But you wouldn't不會 expect期望 anything special特別
63
143807
1773
但你大概不會料到
02:37
to happen發生 when you add the squares廣場 together一起.
64
145580
3076
當你把這些數的平方加起來,
會有什麼特別的結果。
02:40
But check this out.
65
148656
1346
看這個,
02:42
One plus one gives us two,
66
150002
2001
1加1是2,
02:44
and one plus four gives us five.
67
152003
2762
然後,1加4是5。
02:46
And four plus nine is 13,
68
154765
2195
4加9是13,
02:48
nine plus 25 is 34,
69
156960
3213
9 加 25 是 34,
02:52
and yes, the pattern模式 continues繼續.
70
160173
2659
是的,這個規律一直繼續下去。
02:54
In fact事實, here's這裡的 another另一個 one.
71
162832
1621
事實上,還有另外一個。
02:56
Suppose假設 you wanted to look at
72
164453
1844
假設你想要看看
02:58
adding加入 the squares廣場 of
the first few少數 Fibonacci斐波那契 numbers數字.
73
166297
2498
把頭幾個費波那西數的平方值加起來。
03:00
Let's see what we get there.
74
168795
1608
讓我們看看會有什麼結果。
03:02
So one plus one plus four is six.
75
170403
2139
1加1加4等於6。
03:04
Add nine to that, we get 15.
76
172542
3005
再加9,我們得到15。
03:07
Add 25, we get 40.
77
175547
2213
再加 25,我們得到 40。
03:09
Add 64, we get 104.
78
177760
2791
再加 64,我們得到104。
03:12
Now look at those numbers數字.
79
180551
1652
現在來看看這些數字。
03:14
Those are not Fibonacci斐波那契 numbers數字,
80
182203
2384
那些不是費波那西數,
03:16
but if you look at them closely密切,
81
184587
1879
但如果你仔細再看這些數字,
03:18
you'll你會 see the Fibonacci斐波那契 numbers數字
82
186466
1883
你會看到費波那西數
03:20
buried隱藏 inside of them.
83
188349
2178
藏在它們裡面。
03:22
Do you see it? I'll show顯示 it to you.
84
190527
2070
你看到了嗎?讓我指出來給你。
03:24
Six is two times three, 15 is three times five,
85
192597
3733
6是2乘3、 15 是3乘5、
03:28
40 is five times eight,
86
196330
2059
40 是5乘8、
03:30
two, three, five, eight, who do we appreciate欣賞?
87
198389
2928
2、3、 5、 8,我們在欣賞什麼?
03:33
(Laughter笑聲)
88
201317
1187
(笑聲)
03:34
Fibonacci斐波那契! Of course課程.
89
202504
2155
當然是費波那西數!
03:36
Now, as much fun開玩笑 as it is to discover發現 these patterns模式,
90
204659
3783
正如找出這些規律是很好玩的,
03:40
it's even more satisfying滿意的 to understand理解
91
208442
2482
更令人滿意的是瞭解
03:42
why they are true真正.
92
210924
1958
為什麼它們是這樣的。
03:44
Let's look at that last equation方程.
93
212882
1889
讓我們看看這最後的等式。
03:46
Why should the squares廣場 of one, one,
two, three, five and eight
94
214771
3868
為什麼1,1,2,3,5和8的平方
03:50
add up to eight times 13?
95
218639
2545
加起來等於8乘以13?
03:53
I'll show顯示 you by drawing畫畫 a simple簡單 picture圖片.
96
221184
2961
我畫一張簡單的圖來解釋給你。
03:56
We'll start開始 with a one-by-one一個接一個 square廣場
97
224145
2687
我們先由一個1x1的正方形開始
03:58
and next下一個 to that put another另一個 one-by-one一個接一個 square廣場.
98
226832
4165
在旁邊再放一個1x1的正方形。
04:02
Together一起, they form形成 a one-by-two一對二 rectangle長方形.
99
230997
3408
它們一起,構成一個1x2的矩形。
04:06
Beneath下面 that, I'll put a two-by-two兩兩 square廣場,
100
234405
2549
接著,再放一個2x2的正方形,
04:08
and next下一個 to that, a three-by-three三乘三 square廣場,
101
236954
2795
旁邊再來一個3x3的正方形,
04:11
beneath下面 that, a five-by-five五乘以五 square廣場,
102
239749
2001
在下方,放一個5x5的正方形,
04:13
and then an eight-by-eight八乘八 square廣場,
103
241750
1912
然後旁邊一個8x8的正方形,
04:15
creating創建 one giant巨人 rectangle長方形, right?
104
243662
2572
得到一個巨大的矩形,對嗎?
04:18
Now let me ask you a simple簡單 question:
105
246234
1916
現在讓我問你一個簡單的問題:
04:20
what is the area of the rectangle長方形?
106
248150
3656
這個矩形的面積是多少?
04:23
Well, on the one hand,
107
251806
1971
好吧,一方面,
04:25
it's the sum of the areas
108
253777
2530
它是所有這些所包含的
04:28
of the squares廣場 inside it, right?
109
256307
1866
正方形面積的總和,是吧?
04:30
Just as we created創建 it.
110
258173
1359
正如我們如何創造了它,
04:31
It's one squared平方 plus one squared平方
111
259532
2172
它是1的平方加1的平方
04:33
plus two squared平方 plus three squared平方
112
261704
2233
加2的平方再加3的平方
04:35
plus five squared平方 plus eight squared平方. Right?
113
263937
2599
加 5 的平方再加8的平方。對吧?
04:38
That's the area.
114
266536
1857
這就是總面積。
04:40
On the other hand, because it's a rectangle長方形,
115
268393
2326
另一方面,因為它是個矩形
04:42
the area is equal等於 to its height高度 times its base基礎,
116
270719
3648
面積等於高乘以底,
04:46
and the height高度 is clearly明確地 eight,
117
274367
2047
高顯然是8,
04:48
and the base基礎 is five plus eight,
118
276414
2903
而底是5加8,
04:51
which哪一個 is the next下一個 Fibonacci斐波那契 number, 13. Right?
119
279317
3938
這就是下一個費波那西數,13。對吧?
04:55
So the area is also eight times 13.
120
283255
3363
所以面積也是8乘以13。
04:58
Since以來 we've我們已經 correctly正確地 calculated計算 the area
121
286618
2262
既然我們已經用兩種不同的方法,
05:00
two different不同 ways方法,
122
288880
1687
正確地計算出了這個面積
05:02
they have to be the same相同 number,
123
290567
2172
它們必然是相同的數字,
05:04
and that's why the squares廣場 of one,
one, two, three, five and eight
124
292739
3391
這就是為什麼1,1,2,3,5和8的平方
05:08
add up to eight times 13.
125
296130
2291
加起來正好是8乘以13。
05:10
Now, if we continue繼續 this process處理,
126
298421
2374
現在,如果我們繼續這一過程,
05:12
we'll generate生成 rectangles矩形 of the form形成 13 by 21,
127
300795
3978
我們會生成13x21 的矩形,
05:16
21 by 34, and so on.
128
304773
2394
21x34 的矩形等等。
05:19
Now check this out.
129
307167
1409
再來看這個。
05:20
If you divide劃分 13 by eight,
130
308576
2193
如果你用 13除以8,
05:22
you get 1.625.
131
310769
2043
你得到 1.625。
05:24
And if you divide劃分 the larger number
by the smaller number,
132
312812
3427
如果你用較大的數除以較小的數,
05:28
then these ratios get closer接近 and closer接近
133
316239
2873
會發現這些比率越來越接近
05:31
to about 1.618,
134
319112
2653
1.618,
05:33
known已知 to many許多 people as the Golden金色 Ratio,
135
321765
3301
眾所周知的黃金比率,
05:37
a number which哪一個 has fascinated入迷 mathematicians數學家,
136
325066
2596
一個讓數學家,科學家和藝術家
05:39
scientists科學家們 and artists藝術家 for centuries百年.
137
327662
3246
著迷幾個世紀的數字。
05:42
Now, I show顯示 all this to you because,
138
330908
2231
我給你看這些,是因為
05:45
like so much of mathematics數學,
139
333139
2025
像很多數學,
05:47
there's a beautiful美麗 side to it
140
335164
1967
都有它美麗的一面
05:49
that I fear恐懼 does not get enough足夠 attention注意
141
337131
2015
而我覺得(這些美麗)沒有在我們的學校
05:51
in our schools學校.
142
339146
1567
得到足夠的重視。
05:52
We spend lots of time learning學習 about calculation計算,
143
340713
2833
我們花費大量的時間來學習如何計算,
05:55
but let's not forget忘記 about application應用,
144
343546
2756
但別忘了要應用,
05:58
including包含, perhaps也許, the most
important重要 application應用 of all,
145
346302
3454
或許,包括,最重要的應用,
06:01
learning學習 how to think.
146
349756
2076
學習如何去思考。
06:03
If I could summarize總結 this in one sentence句子,
147
351832
1957
如果要用一句話來總結,
06:05
it would be this:
148
353789
1461
那就是:
06:07
Mathematics數學 is not just solving for x,
149
355250
3360
數學不只是解出x,
06:10
it's also figuring盤算 out why.
150
358610
2925
也要知道為什麼。
06:13
Thank you very much.
151
361535
1815
謝謝。
06:15
(Applause掌聲)
152
363350
4407
(掌聲)
Translated by Yukun Chen
Reviewed by 宇凡 布

▲Back to top

ABOUT THE SPEAKER
Arthur Benjamin - Mathemagician
Using daring displays of algorithmic trickery, lightning calculator and number wizard Arthur Benjamin mesmerizes audiences with mathematical mystery and beauty.

Why you should listen

Arthur Benjamin makes numbers dance. In his day job, he's a professor of math at Harvey Mudd College; in his other day job, he's a "Mathemagician," taking the stage in his tuxedo to perform high-speed mental calculations, memorizations and other astounding math stunts. It's part of his drive to teach math and mental agility in interesting ways, following in the footsteps of such heroes as Martin Gardner.

Benjamin is the co-author, with Michael Shermer, of Secrets of Mental Math (which shares his secrets for rapid mental calculation), as well as the co-author of the MAA award-winning Proofs That Really Count: The Art of Combinatorial Proof. For a glimpse of his broad approach to math, see the list of research talks on his website, which seesaws between high-level math (such as his "Vandermonde's Determinant and Fibonacci SAWs," presented at MIT in 2004) and engaging math talks for the rest of us ("An Amazing Mathematical Card Trick").

More profile about the speaker
Arthur Benjamin | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee