ABOUT THE SPEAKER
Arthur Benjamin - Mathemagician
Using daring displays of algorithmic trickery, lightning calculator and number wizard Arthur Benjamin mesmerizes audiences with mathematical mystery and beauty.

Why you should listen

Arthur Benjamin makes numbers dance. In his day job, he's a professor of math at Harvey Mudd College; in his other day job, he's a "Mathemagician," taking the stage in his tuxedo to perform high-speed mental calculations, memorizations and other astounding math stunts. It's part of his drive to teach math and mental agility in interesting ways, following in the footsteps of such heroes as Martin Gardner.

Benjamin is the co-author, with Michael Shermer, of Secrets of Mental Math (which shares his secrets for rapid mental calculation), as well as the co-author of the MAA award-winning Proofs That Really Count: The Art of Combinatorial Proof. For a glimpse of his broad approach to math, see the list of research talks on his website, which seesaws between high-level math (such as his "Vandermonde's Determinant and Fibonacci SAWs," presented at MIT in 2004) and engaging math talks for the rest of us ("An Amazing Mathematical Card Trick").

More profile about the speaker
Arthur Benjamin | Speaker | TED.com
TEDGlobal 2013

Arthur Benjamin: The magic of Fibonacci numbers

Arthur Benjamin: Čarobnost Fibonaccijevih števil

Filmed:
7,057,274 views

Matematika je logična, uporabna in preprosto ... krasna. Matemag Arthur Benjamin raziskuje skrite lastnosti čudnega in čudovitega niza števil, ki se imenuje Fibonaccijevo zaporedje. (In nas opomni, da je tudi matematika lahko vir navdiha!)
- Mathemagician
Using daring displays of algorithmic trickery, lightning calculator and number wizard Arthur Benjamin mesmerizes audiences with mathematical mystery and beauty. Full bio

Double-click the English transcript below to play the video.

00:12
So why do we learnučiti se mathematicsmatematika?
0
613
3039
Torej, zakaj se učimo matematike?
00:15
EssentiallyV bistvu, for threetri reasonsrazlogov:
1
3652
2548
V glavnem imamo tri razloge:
00:18
calculationizračun,
2
6200
1628
računanje
00:19
applicationaplikacija,
3
7828
1900
uporaba
00:21
and last, and unfortunatelyna žalost leastvsaj
4
9728
2687
in na koncu še razlog,
ki je žal daleč zadaj,
00:24
in termspogoji of the time we give it,
5
12415
2105
kar se tiče časa, ki mu ga namenimo,
00:26
inspirationnavdih.
6
14520
1922
navdih.
00:28
MathematicsMatematika is the scienceznanost of patternsvzorce,
7
16442
2272
Matematika je znanost vzorcev
00:30
and we studyštudija it to learnučiti se how to think logicallylogično,
8
18714
3358
in učimo se je, da se naučimo
razmišljati logično,
00:34
criticallykritično and creativelyustvarjalno,
9
22072
2527
kritično in ustvarjalno.
00:36
but too much of the mathematicsmatematika
that we learnučiti se in schoolšola
10
24599
2926
Ampak prevečkrat za matematiko,
ki jo učijo v šoli,
00:39
is not effectivelyučinkovito motivatedmotivirani,
11
27525
2319
ni učinkovite motivacije
00:41
and when our studentsštudenti askvprašajte,
12
29844
1425
in ko nas učenci vprašajo:
00:43
"Why are we learningučenje this?"
13
31269
1675
"Zakaj se to učimo?"
00:44
then they oftenpogosto hearslišite that they'lloni bodo need it
14
32944
1961
pogosto slišijo,
da bodo znanje potrebovali
00:46
in an upcomingprihajajoči mathmatematika classrazred or on a futureprihodnost testtest.
15
34905
3265
pri pouku matematike
ali pri naslednjem testu.
00:50
But wouldn'tne bi it be great
16
38170
1802
Ampak, ali ne bi bilo krasno,
00:51
if everyvsak onceenkrat in a while we did mathematicsmatematika
17
39972
2518
če bi kdaj pa kdaj uporabljali matematiko
00:54
simplypreprosto because it was funzabavno or beautifullepo
18
42490
2949
preprosto zato, ker je zabavna ali lepa
00:57
or because it excitednavdušen the mindum?
19
45439
2090
ali pa ker spodbuja razmišljanje?
00:59
Now, I know manyveliko people have not
20
47529
1722
Veliko ljudi ni imelo priložnosti,
01:01
had the opportunitypriložnost to see how this can happense zgodi,
21
49251
2319
da bi videli, kako se to lahko zgodi,
01:03
so let me give you a quickhitro exampleprimer
22
51570
1829
zato vam bom na hitro pokazal primer
01:05
with my favoritenajljubši collectionzbirka of numbersštevilke,
23
53399
2341
s svojo najljubšo zbirko številk,
01:07
the FibonacciFibonacci numbersštevilke. (ApplauseAplavz)
24
55740
2728
Fibonaccijevimi števili. (Aplavz)
01:10
Yeah! I alreadyže have FibonacciFibonacci fansnavijači here.
25
58468
2052
To! Tu je nekaj
Fibonaccijevih oboževalcev.
01:12
That's great.
26
60520
1316
Odlično.
01:13
Now these numbersštevilke can be appreciatedcenijo
27
61836
2116
Torej, ta števila so krasna
01:15
in manyveliko differentdrugačen waysnačinov.
28
63952
1878
na veliko različnih načinov.
01:17
From the standpointstališče of calculationizračun,
29
65830
2709
Z vidika računanja
01:20
they're as easyenostavno to understandrazumeti
30
68539
1677
so tako lahko razumljiva
01:22
as one plusplus one, whichki is two.
31
70216
2554
kot ena plus ena, kar je dva.
01:24
Then one plusplus two is threetri,
32
72770
2003
Potem imamo ena plus dva je tri,
01:26
two plusplus threetri is fivepet, threetri plusplus fivepet is eightosem,
33
74773
3014
dva plus tri je pet, tri plus pet je osem
01:29
and so on.
34
77787
1525
in tako naprej.
01:31
IndeedDejansko, the personoseba we call FibonacciFibonacci
35
79312
2177
V resnici se je oseba,
ki ji pravimo Fibonacci,
01:33
was actuallydejansko namedimenovan LeonardoLeonardo of PisaPisa,
36
81489
3180
imenovala Leonardo Pisano
01:36
and these numbersštevilke appearPojavi se in his bookknjigo "LiberLiber AbaciAbaci,"
37
84669
3053
in ta števila so zapisana
v njegovi knjigi "Liber Abaci",
01:39
whichki taughtučil the WesternWestern worldsvet
38
87722
1650
ki je zahodni svet naučila
01:41
the methodsmetode of arithmeticaritmetično that we use todaydanes.
39
89372
2827
aritmetičnih metod,
ki jih uporabljamo danes.
01:44
In termspogoji of applicationsaplikacije,
40
92199
1721
Kar se tiče uporabe,
01:45
FibonacciFibonacci numbersštevilke appearPojavi se in naturenarava
41
93920
2183
se Fibonaccijeva števila
v naravi pojavljajo
01:48
surprisinglypresenetljivo oftenpogosto.
42
96103
1857
presenetljivo pogosto.
01:49
The numberštevilka of petalscvetnih listov on a flowercvet
43
97960
1740
Število cvetnih listov na roži
01:51
is typicallyobičajno a FibonacciFibonacci numberštevilka,
44
99700
1862
je ponavadi Fibonaccijevo število,
01:53
or the numberštevilka of spiralsspirale on a sunflowerSončnica
45
101562
2770
pa tudi število spiral na sončnici
01:56
or a pineappleananas
46
104332
1411
ali ananasu
01:57
tendstežava to be a FibonacciFibonacci numberštevilka as well.
47
105743
2394
je pogosto Fibonaccijevo število.
02:00
In factdejstvo, there are manyveliko more
applicationsaplikacije of FibonacciFibonacci numbersštevilke,
48
108137
3503
Pravzaprav je možnosti uporabe
Fibonaccijevih števil veliko več,
02:03
but what I find mostnajbolj inspirationalinspirativno about them
49
111640
2560
a sam mislim, da so pri njih
najbolj navdušujoči
02:06
are the beautifullepo numberštevilka patternsvzorce they displayprikaz.
50
114200
2734
lepi številski vzorci, ki jih ustvarjajo.
02:08
Let me showshow you one of my favoritespriljubljene.
51
116934
2194
Pokazal vam bom enega
od svojih najljubših.
02:11
SupposeRecimo, da you like to squarekvadrat numbersštevilke,
52
119128
2221
Recimo, da radi kvadrirate števila,
02:13
and franklyodkrito, who doesn't? (LaughterSmeh)
53
121349
2675
konec koncev, kdo jih pa ne? (Smeh)
02:16
Let's look at the squareskvadratov
54
124040
2240
Poglejmo kvadrate
02:18
of the first fewmalo FibonacciFibonacci numbersštevilke.
55
126280
1851
prvih nekaj Fibonaccijevih števil.
02:20
So one squaredkvadrat is one,
56
128131
2030
Torej, ena na kvadrat je ena,
02:22
two squaredkvadrat is fourštiri, threetri squaredkvadrat is ninedevet,
57
130161
2317
dva na kvadrat je štiri,
tri na kvadrat je devet,
02:24
fivepet squaredkvadrat is 25, and so on.
58
132478
3173
pet na kvadrat je 25 in tako naprej.
02:27
Now, it's no surprisepresenečenje
59
135651
1901
No, ni prav presenetljivo,
02:29
that when you adddodaj consecutivezaporednih FibonacciFibonacci numbersštevilke,
60
137552
2828
da, ko seštejemo
zaporedna Fibonaccijeva števila,
02:32
you get the nextNaslednji FibonacciFibonacci numberštevilka. Right?
61
140380
2032
dobimo naslednje
Fibonaccijevo število. Drži?
02:34
That's how they're createdustvarjeno.
62
142412
1395
Tako nastanejo.
02:35
But you wouldn'tne bi expectpričakovati anything specialposeben
63
143807
1773
Ne bi pa pričakovali, da se zgodi
02:37
to happense zgodi when you adddodaj the squareskvadratov togetherskupaj.
64
145580
3076
kaj posebnega,
ko seštejemo njihove kvadrate.
02:40
But checkpreveri this out.
65
148656
1346
Pa poglejte zdaj tole.
02:42
One plusplus one givesdaje us two,
66
150002
2001
Ena plus ena je dva
02:44
and one plusplus fourštiri givesdaje us fivepet.
67
152003
2762
in ena plus štiri je pet.
02:46
And fourštiri plusplus ninedevet is 13,
68
154765
2195
In štiri plus devet je 13,
02:48
ninedevet plusplus 25 is 34,
69
156960
3213
devet plus 25 je 34,
02:52
and yes, the patternvzorec continuesse nadaljuje.
70
160173
2659
in ja, vzorec se nadaljuje.
02:54
In factdejstvo, here'sTukaj je anotherdrugo one.
71
162832
1621
V bistvu imamo še en vzorec.
02:56
SupposeRecimo, da you wanted to look at
72
164453
1844
Recimo, da bi hoteli pogledati
seštevek kvadratov
prvih nekaj Fibonaccijevih števil.
02:58
addingdodajanje the squareskvadratov of
the first fewmalo FibonacciFibonacci numbersštevilke.
73
166297
2498
03:00
Let's see what we get there.
74
168795
1608
Pa poglejmo, kaj dobimo.
03:02
So one plusplus one plusplus fourštiri is sixšest.
75
170403
2139
Torej, ena plus ena plus štiri je šest.
03:04
AddDodaj ninedevet to that, we get 15.
76
172542
3005
Dodajmo še devet in dobimo 15.
03:07
AddDodaj 25, we get 40.
77
175547
2213
Dodamo 25 in dobimo 40.
03:09
AddDodaj 64, we get 104.
78
177760
2791
Dodamo 64, dobimo 104.
03:12
Now look at those numbersštevilke.
79
180551
1652
Zdaj pa poglejmo ta števila.
03:14
Those are not FibonacciFibonacci numbersštevilke,
80
182203
2384
To niso Fibonaccijeva števila,
03:16
but if you look at them closelytesno,
81
184587
1879
ampak, če jih pogledate od blizu,
03:18
you'llboš see the FibonacciFibonacci numbersštevilke
82
186466
1883
boste videli, da se Fibonaccijeva števila
03:20
buriedpokopan insideznotraj of them.
83
188349
2178
skrivajo v njih.
03:22
Do you see it? I'll showshow it to you.
84
190527
2070
Jih vidite? Vam bom pokazal.
03:24
SixŠest is two timeskrat threetri, 15 is threetri timeskrat fivepet,
85
192597
3733
Šest je dva krat tri, 15 je tri krat pet,
03:28
40 is fivepet timeskrat eightosem,
86
196330
2059
40 je pet krat osem,
03:30
two, threetri, fivepet, eightosem, who do we appreciatecenite?
87
198389
2928
dva, tri, pet, osem, koga občudujemo?
03:33
(LaughterSmeh)
88
201317
1187
(Smeh)
03:34
FibonacciFibonacci! Of courseseveda.
89
202504
2155
Fibonaccija! Jasno.
03:36
Now, as much funzabavno as it is to discoverodkrijte these patternsvzorce,
90
204659
3783
Zelo zabavno je odkrivati vzorce,
03:40
it's even more satisfyingki izpolnjuje to understandrazumeti
91
208442
2482
a v še večje zadovoljstvo je razumeti
03:42
why they are trueresnično.
92
210924
1958
zakaj držijo.
03:44
Let's look at that last equationenačba.
93
212882
1889
Poglejmo zadnjo enačbo.
03:46
Why should the squareskvadratov of one, one,
two, threetri, fivepet and eightosem
94
214771
3868
Zakaj mora seštevek kvadratov od
ena, ena, dva, tri, pet in osem
03:50
adddodaj up to eightosem timeskrat 13?
95
218639
2545
znašati osem krat 13?
03:53
I'll showshow you by drawingrisanje a simplepreprosto pictureslika.
96
221184
2961
To vam bom pokazal s preprosto sliko.
03:56
We'llBomo startZačni with a one-by-oneenega squarekvadrat
97
224145
2687
Začeli bomo s kvadratom ena krat ena
03:58
and nextNaslednji to that put anotherdrugo one-by-oneenega squarekvadrat.
98
226832
4165
in zraven njega narisali
še en kvadrat ena krat ena.
04:02
TogetherSkupaj, they formobrazec a one-by-twoena dva rectanglepravokotnik.
99
230997
3408
Skupaj sestavljata
pravokotnik ena krat dva.
04:06
BeneathPod that, I'll put a two-by-twodva po dva squarekvadrat,
100
234405
2549
Pod njega bom narisal
kvadrat dva krat dva,
04:08
and nextNaslednji to that, a three-by-threetri za tri squarekvadrat,
101
236954
2795
zraven njega pa kvadrat tri krat tri,
04:11
beneathspodaj that, a five-by-fivepet pet squarekvadrat,
102
239749
2001
pod njega kvadrat pet krat pet
04:13
and then an eight-by-eightosem jih osem squarekvadrat,
103
241750
1912
in nato kvadrat osem krat osem,
04:15
creatingustvarjanje one giantvelikan rectanglepravokotnik, right?
104
243662
2572
in tako sem sestavil ogromen pravokotnik.
04:18
Now let me askvprašajte you a simplepreprosto questionvprašanje:
105
246234
1916
Zdaj vam bom postavil preprosto vprašanje:
04:20
what is the areaobmočje of the rectanglepravokotnik?
106
248150
3656
Kolikšna je ploščina pravokotnika?
04:23
Well, on the one handroka,
107
251806
1971
No, po svoje
04:25
it's the sumvsota of the areasobmočja
108
253777
2530
je vsota ploščin
04:28
of the squareskvadratov insideznotraj it, right?
109
256307
1866
vseh kvadratov v njem, drži?
04:30
Just as we createdustvarjeno it.
110
258173
1359
Kot smo ga naredili.
04:31
It's one squaredkvadrat plusplus one squaredkvadrat
111
259532
2172
Ena na kvadrat plus ena na kvadrat
04:33
plusplus two squaredkvadrat plusplus threetri squaredkvadrat
112
261704
2233
plus dva na kvadrat plus tri na kvadrat
04:35
plusplus fivepet squaredkvadrat plusplus eightosem squaredkvadrat. Right?
113
263937
2599
plus pet na kvadrat plus osem na kvadrat.
04:38
That's the areaobmočje.
114
266536
1857
To je ploščina.
04:40
On the other handroka, because it's a rectanglepravokotnik,
115
268393
2326
Po drugi strani pa, ker je pravokotnik,
04:42
the areaobmočje is equalenako to its heightvišina timeskrat its basebazo,
116
270719
3648
je ploščina enaka višini krat širini
04:46
and the heightvišina is clearlyjasno eightosem,
117
274367
2047
in višina je očitno osem,
04:48
and the basebazo is fivepet plusplus eightosem,
118
276414
2903
širina pa pet plus osem,
04:51
whichki is the nextNaslednji FibonacciFibonacci numberštevilka, 13. Right?
119
279317
3938
kar je naslednje
Fibonaccijevo število, 13. Je tako?
04:55
So the areaobmočje is alsotudi eightosem timeskrat 13.
120
283255
3363
Tako imamo ploščino osem krat 13.
04:58
SinceOd we'vesmo correctlypravilno calculatedizračuna the areaobmočje
121
286618
2262
Ker smo pravilno izračunali ploščino
05:00
two differentdrugačen waysnačinov,
122
288880
1687
na dva različna načina,
05:02
they have to be the sameenako numberštevilka,
123
290567
2172
moramo dobiti enako številko
05:04
and that's why the squareskvadratov of one,
one, two, threetri, fivepet and eightosem
124
292739
3391
in zato je seštevek kvadratov od
ena, ena, dva, tri, pet in osem
05:08
adddodaj up to eightosem timeskrat 13.
125
296130
2291
skupaj osem krat 13.
05:10
Now, if we continuenadaljuj this processproces,
126
298421
2374
Če nadaljujemo s tem postopkom,
05:12
we'llbomo generateustvarjati rectanglespravokotniki of the formobrazec 13 by 21,
127
300795
3978
bomo ustvarili pravokotnike
s stranicami 13 krat 21,
05:16
21 by 34, and so on.
128
304773
2394
21 krat 34 in tako naprej.
05:19
Now checkpreveri this out.
129
307167
1409
Zdaj pa poglejte tole.
05:20
If you divideRazdelite 13 by eightosem,
130
308576
2193
Če 13 delimo z osem,
05:22
you get 1.625.
131
310769
2043
dobimo 1,625.
05:24
And if you divideRazdelite the largervečje numberštevilka
by the smallermanjši numberštevilka,
132
312812
3427
In če delimo večje število
z manjšim številom,
05:28
then these ratiosrazmerja get closerbližje and closerbližje
133
316239
2873
se razmerje vedno bolj približuje
05:31
to about 1.618,
134
319112
2653
okoli 1,618,
05:33
knownznano to manyveliko people as the GoldenZlati RatioRazmerje,
135
321765
3301
kar veliko ljudi pozna kot zlati rez,
05:37
a numberštevilka whichki has fascinatedfasciniran mathematiciansmatematiki,
136
325066
2596
število, ki je stoletja navduševalo
05:39
scientistsznanstveniki and artistsumetniki for centuriesstoletja.
137
327662
3246
matematike, znanstvenike in umetnike.
05:42
Now, I showshow all this to you because,
138
330908
2231
To vam kažem, ker,
05:45
like so much of mathematicsmatematika,
139
333139
2025
kot toliko matematike,
05:47
there's a beautifullepo sidestran to it
140
335164
1967
v sebi skriva nekaj lepega,
05:49
that I fearstrah does not get enoughdovolj attentionpozornost
141
337131
2015
čemur mislim, da v naših šolah žal
05:51
in our schoolsšole.
142
339146
1567
ne posvečamo dovolj pozornosti.
05:52
We spendporabiti lots of time learningučenje about calculationizračun,
143
340713
2833
Veliko časa se učimo o računanju,
05:55
but let's not forgetpozabi about applicationaplikacija,
144
343546
2756
ampak ne smemo pozabiti na uporabo,
05:58
includingvključno z, perhapsmorda, the mostnajbolj
importantpomembno applicationaplikacija of all,
145
346302
3454
vključno z morda najpomembnejšo uporabo,
06:01
learningučenje how to think.
146
349756
2076
da se naučimo, kako razmišljati.
06:03
If I could summarizepovzamemo this in one sentencestavek,
147
351832
1957
Če bi lahko to zajel v enem stavku,
06:05
it would be this:
148
353789
1461
bi rekel tole:
06:07
MathematicsMatematika is not just solvingreševanje for x,
149
355250
3360
Matematika ni samo iskanje x-a,
06:10
it's alsotudi figuringfiguring out why.
150
358610
2925
ampak tudi smisla.
06:13
Thank you very much.
151
361535
1815
Najlepša hvala.
06:15
(ApplauseAplavz)
152
363350
4407
(Aplavz)
Translated by Petra Zajc
Reviewed by Nika Kotnik

▲Back to top

ABOUT THE SPEAKER
Arthur Benjamin - Mathemagician
Using daring displays of algorithmic trickery, lightning calculator and number wizard Arthur Benjamin mesmerizes audiences with mathematical mystery and beauty.

Why you should listen

Arthur Benjamin makes numbers dance. In his day job, he's a professor of math at Harvey Mudd College; in his other day job, he's a "Mathemagician," taking the stage in his tuxedo to perform high-speed mental calculations, memorizations and other astounding math stunts. It's part of his drive to teach math and mental agility in interesting ways, following in the footsteps of such heroes as Martin Gardner.

Benjamin is the co-author, with Michael Shermer, of Secrets of Mental Math (which shares his secrets for rapid mental calculation), as well as the co-author of the MAA award-winning Proofs That Really Count: The Art of Combinatorial Proof. For a glimpse of his broad approach to math, see the list of research talks on his website, which seesaws between high-level math (such as his "Vandermonde's Determinant and Fibonacci SAWs," presented at MIT in 2004) and engaging math talks for the rest of us ("An Amazing Mathematical Card Trick").

More profile about the speaker
Arthur Benjamin | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee