ABOUT THE SPEAKER
Arthur Benjamin - Mathemagician
Using daring displays of algorithmic trickery, lightning calculator and number wizard Arthur Benjamin mesmerizes audiences with mathematical mystery and beauty.

Why you should listen

Arthur Benjamin makes numbers dance. In his day job, he's a professor of math at Harvey Mudd College; in his other day job, he's a "Mathemagician," taking the stage in his tuxedo to perform high-speed mental calculations, memorizations and other astounding math stunts. It's part of his drive to teach math and mental agility in interesting ways, following in the footsteps of such heroes as Martin Gardner.

Benjamin is the co-author, with Michael Shermer, of Secrets of Mental Math (which shares his secrets for rapid mental calculation), as well as the co-author of the MAA award-winning Proofs That Really Count: The Art of Combinatorial Proof. For a glimpse of his broad approach to math, see the list of research talks on his website, which seesaws between high-level math (such as his "Vandermonde's Determinant and Fibonacci SAWs," presented at MIT in 2004) and engaging math talks for the rest of us ("An Amazing Mathematical Card Trick").

More profile about the speaker
Arthur Benjamin | Speaker | TED.com
TEDGlobal 2013

Arthur Benjamin: The magic of Fibonacci numbers

Arthur Benjamin: Magija Fibonačijevih brojeva

Filmed:
7,057,274 views

Matematika je logična, upotrebljiva i jednostavno... fenomenalna. Matemagičar Arthur Benjamin istražuje skrivene mogućnosti tog čudnog i divnog niza brojeva, Fibonačijevog niza (I podsjeća nas da matematika može biti inspirativna, također!).
- Mathemagician
Using daring displays of algorithmic trickery, lightning calculator and number wizard Arthur Benjamin mesmerizes audiences with mathematical mystery and beauty. Full bio

Double-click the English transcript below to play the video.

00:12
So why do we learnuči mathematicsmatematika?
0
613
3039
Dakle, zašto učimo matematiku?
00:15
EssentiallyU suštini, for threetri reasonsrazloge:
1
3652
2548
U suštini, iz tri razloga:
00:18
calculationproračun,
2
6200
1628
računanje,
00:19
applicationaplikacija,
3
7828
1900
primjena,
00:21
and last, and unfortunatelynažalost leastnajmanje
4
9728
2687
i posljednji, nažalost najmanje važan
00:24
in termsuslovi of the time we give it,
5
12415
2105
u smislu vremena koji mu posvetimo,
00:26
inspirationinspiracija.
6
14520
1922
je inspiracija.
00:28
MathematicsMatematika is the sciencenauka of patternsobrasci,
7
16442
2272
Matematika je nauka o uzorcima
00:30
and we studystudija it to learnuči how to think logicallylogički,
8
18714
3358
i proučavamo je s ciljem da naučimo kako razmišljati logički,
00:34
criticallykritički and creativelykreativno,
9
22072
2527
kritički i kreativno,
00:36
but too much of the mathematicsmatematika
that we learnuči in schoolškola
10
24599
2926
ali matematika koju učimo u školi
00:39
is not effectivelyefikasno motivatedmotivirani,
11
27525
2319
uglavnom neuspješno motiviše
00:41
and when our studentsstudenti askpitajte,
12
29844
1425
i kada naši učenici pitaju:
00:43
"Why are we learningučenje this?"
13
31269
1675
"Zašto ovo učimo?"
00:44
then they oftenčesto hearčuti that they'lloni će need it
14
32944
1961
obično čuju da će im to zatrebati
00:46
in an upcomingNadolazeći mathmatematika classklasa or on a futurebudućnost testtest.
15
34905
3265
na narednom času matematike ili na budućem ispitu.
00:50
But wouldn'tne bi it be great
16
38170
1802
Međutim, zar ne bi bilo divno
00:51
if everysvaki oncejednom in a while we did mathematicsmatematika
17
39972
2518
kad bismo se s vremena na vrijeme bavili matematikom
00:54
simplyjednostavno because it was funzabava or beautifulprelepo
18
42490
2949
jednostavno zato što je zabavna i lijepa
00:57
or because it exciteduzbuđeni the mindum?
19
45439
2090
ili možda zato što je uspjela uzbuditi um?
00:59
Now, I know manymnogi people have not
20
47529
1722
Znam da mnogi nisu
01:01
had the opportunityprilika to see how this can happenda se desi,
21
49251
2319
uspjeli doživjeti to o čemu pričam,
01:03
so let me give you a quickbrzo exampleprimer
22
51570
1829
pa zato dopustite da vam dam jednostavan primjer
01:05
with my favoriteomiljeni collectionkolekcija of numbersbrojevi,
23
53399
2341
koristeći moju omiljenu kolekciju brojeva,
01:07
the FibonacciFibonacci numbersbrojevi. (ApplausePljesak)
24
55740
2728
Fibonačijeve brojeve. (Aplauz)
01:10
Yeah! I alreadyveć have FibonacciFibonacci fansfanovi here.
25
58468
2052
Tako je! Vidim da ovdje imamo Fibonačijeve obožavatelje.
01:12
That's great.
26
60520
1316
To je divno.
01:13
Now these numbersbrojevi can be appreciatedpoštovati
27
61836
2116
Značaj ovih brojeva se ogleda
01:15
in manymnogi differentdrugačiji waysnačina.
28
63952
1878
na više načina.
01:17
From the standpointstanovište of calculationproračun,
29
65830
2709
Sa stanovišta računanja,
01:20
they're as easylako to understandrazumijete
30
68539
1677
jednostavno ih je razumjeti
01:22
as one plusplus one, whichšto is two.
31
70216
2554
kao što je i to da je jedan i jedan jednako dva.
01:24
Then one plusplus two is threetri,
32
72770
2003
Zatim, jedan i dva je tri,
01:26
two plusplus threetri is fivepet, threetri plusplus fivepet is eightosam,
33
74773
3014
dva i tri je pet, tri i pet je osam,
01:29
and so on.
34
77787
1525
i tako dalje.
01:31
IndeedDoista, the personosoba we call FibonacciFibonacci
35
79312
2177
Zaista, osoba koju zovemo Fibonači
01:33
was actuallyzapravo namedimenovan LeonardoLeonardo of PisaPisa,
36
81489
3180
se ustvari zvala Leonardo od Pise,
01:36
and these numbersbrojevi appearpojaviti in his bookknjiga "LiberLiber AbaciAbaci,"
37
84669
3053
a ovi brojevi se spominju u njegovoj knjizi "Liber Abaci" ("Knjiga računanja"),
01:39
whichšto taughtpredavao the WesternZapadni worldsvet
38
87722
1650
koja je naučila zapadni svijet
01:41
the methodsmetode of arithmeticaritmetika that we use todaydanas.
39
89372
2827
metodama aritmetike koje koristimo danas.
01:44
In termsuslovi of applicationsaplikacije,
40
92199
1721
U smislu primjene,
01:45
FibonacciFibonacci numbersbrojevi appearpojaviti in naturepriroda
41
93920
2183
Fibonačijevi brojevi se pojavljuju u prirodi
01:48
surprisinglyiznenađujuće oftenčesto.
42
96103
1857
iznenađujuće često.
01:49
The numberbroj of petalslatice on a flowercvet
43
97960
1740
Broj latica na cvijetu
01:51
is typicallyobično a FibonacciFibonacci numberbroj,
44
99700
1862
je obično Fibonačijev broj,
01:53
or the numberbroj of spiralsspirala on a sunflowersuncokret
45
101562
2770
ili broj spirala na suncokretu
01:56
or a pineappleananas
46
104332
1411
ili ananasu
01:57
tendsteži to be a FibonacciFibonacci numberbroj as well.
47
105743
2394
također teži da bude Fibonačijev broj.
02:00
In factčinjenica, there are manymnogi more
applicationsaplikacije of FibonacciFibonacci numbersbrojevi,
48
108137
3503
Ustvari, postoje mnoge druge primjene Fibonačijevih brojeva,
02:03
but what I find mostnajviše inspirationalinspirativni about them
49
111640
2560
ali ono sto smatram najinspirativnijim
02:06
are the beautifulprelepo numberbroj patternsobrasci they displaydisplay.
50
114200
2734
su divni šabloni brojeva koje predstavljaju.
02:08
Let me showshow you one of my favoritesFavoriti.
51
116934
2194
Sad ću vam pokazati jedan od mojih omiljenih.
02:11
SupposePretpostavimo da you like to squarekvadrat numbersbrojevi,
52
119128
2221
Pretpostavimo da volite kvadrirati brojeve,
02:13
and franklyiskreno, who doesn't? (LaughterSmijeh)
53
121349
2675
a realno, ko ne voli? (Smijeh)
02:16
Let's look at the squareskvadrati
54
124040
2240
Pogledajmo kvadrate
02:18
of the first fewnekoliko FibonacciFibonacci numbersbrojevi.
55
126280
1851
prvih nekoliko Fibonačijevih brojeva.
02:20
So one squaredkvadratna is one,
56
128131
2030
Dakle, kvadrat broja jedan je jedan,
02:22
two squaredkvadratna is fourčetiri, threetri squaredkvadratna is ninedevet,
57
130161
2317
kvadrat broja dva je četiri, tri na kvadrat je devet,
02:24
fivepet squaredkvadratna is 25, and so on.
58
132478
3173
pet na kvadrat je 25, itd.
02:27
Now, it's no surpriseiznenađenje
59
135651
1901
Nije nikakvo iznenađenje
02:29
that when you adddodati consecutiveuzastopnih FibonacciFibonacci numbersbrojevi,
60
137552
2828
da sabiranjem dva uzastopna Fibonačijeva broja,
02:32
you get the nextsledeći FibonacciFibonacci numberbroj. Right?
61
140380
2032
dobijemo sljedeći Fibonačijev broj, je li tako?
02:34
That's how they're createdstvoreno.
62
142412
1395
Tako se oni i kreiraju.
02:35
But you wouldn'tne bi expectocekujem anything specialposeban
63
143807
1773
Međutim, ne biste očekivali nista posebno
02:37
to happenda se desi when you adddodati the squareskvadrati togetherzajedno.
64
145580
3076
da se dogodi u slučaju sabiranja njihovih kvadrata.
02:40
But checkproveri this out.
65
148656
1346
Ali, pogledajte ovo.
02:42
One plusplus one givesdaje us two,
66
150002
2001
Jedan i jedan je dva,
02:44
and one plusplus fourčetiri givesdaje us fivepet.
67
152003
2762
a jedan i četiri je pet.
02:46
And fourčetiri plusplus ninedevet is 13,
68
154765
2195
Četiri i devet je 13,
02:48
ninedevet plusplus 25 is 34,
69
156960
3213
devet i 25 je 34,
02:52
and yes, the patternobrazac continuesnastavlja.
70
160173
2659
i da, šablon se nastavlja.
02:54
In factčinjenica, here'sevo anotherdrugi one.
71
162832
1621
Ustvari, evo jos jednog.
02:56
SupposePretpostavimo da you wanted to look at
72
164453
1844
Pretpostavimo da ste htjeli pokušati
02:58
addingdodavanje the squareskvadrati of
the first fewnekoliko FibonacciFibonacci numbersbrojevi.
73
166297
2498
sabrati kvadrate prvih nekoliko Fibonačijevih brojeva.
03:00
Let's see what we get there.
74
168795
1608
Pogledajmo šta smo dobili ovdje.
03:02
So one plusplus one plusplus fourčetiri is sixšest.
75
170403
2139
Dakle, jedan plus jedan plus četiri je šest.
03:04
AddDodati ninedevet to that, we get 15.
76
172542
3005
Ako dodamo devet na to, dobit ćemo 15.
03:07
AddDodati 25, we get 40.
77
175547
2213
Dodavanjem 25, dobijamo 40.
03:09
AddDodati 64, we get 104.
78
177760
2791
Dodavanjem 64, dobijamo 104.
03:12
Now look at those numbersbrojevi.
79
180551
1652
Sada pogledajte ove brojeve.
03:14
Those are not FibonacciFibonacci numbersbrojevi,
80
182203
2384
Ovo nisu Fibonačijevi brojevi,
03:16
but if you look at them closelyblisko,
81
184587
1879
ali ako ih bolje pogledate,
03:18
you'llti ćeš see the FibonacciFibonacci numbersbrojevi
82
186466
1883
vidjet ćete Fibonačijeve brojeve
03:20
buriedpokopan insideunutra of them.
83
188349
2178
unutar ovih brojeva.
03:22
Do you see it? I'll showshow it to you.
84
190527
2070
Vidite li? Pokazat ću vam.
03:24
SixŠest is two timesputa threetri, 15 is threetri timesputa fivepet,
85
192597
3733
Šest je dva pomnoženo sa tri, 15 je tri pomnoženo sa pet,
03:28
40 is fivepet timesputa eightosam,
86
196330
2059
40 je pet pomnoženo sa osam,
03:30
two, threetri, fivepet, eightosam, who do we appreciatecenite?
87
198389
2928
dva, tri, pet, osam, pogodi ko sam?
03:33
(LaughterSmijeh)
88
201317
1187
(Smijeh)
03:34
FibonacciFibonacci! Of coursekurs.
89
202504
2155
Fibonači, naravno!
03:36
Now, as much funzabava as it is to discoverotkriti these patternsobrasci,
90
204659
3783
Koliko god da je zabavno otkriti ove šablone,
03:40
it's even more satisfyingzadovoljavajući to understandrazumijete
91
208442
2482
još je bolje shvatiti
03:42
why they are trueistinito.
92
210924
1958
zašto oni postoje.
03:44
Let's look at that last equationjednačina.
93
212882
1889
Pogledajmo posljednju jednačinu.
03:46
Why should the squareskvadrati of one, one,
two, threetri, fivepet and eightosam
94
214771
3868
Zašto bi zbir kvadrata od jedan, jedan, dva, tri, pet i osam
03:50
adddodati up to eightosam timesputa 13?
95
218639
2545
bio jednak rezultatu proizvoda brojeva osam i 13?
03:53
I'll showshow you by drawingcrtanje a simplejednostavno pictureslika.
96
221184
2961
Pokazat ću vam pomoću jednostavne slike.
03:56
We'llMi ćemo startpočnite with a one-by-onejedan po jedan squarekvadrat
97
224145
2687
Počet ćemo sa kvadratom "jedan sa jedan"
03:58
and nextsledeći to that put anotherdrugi one-by-onejedan po jedan squarekvadrat.
98
226832
4165
i pored njega ćemo staviti isti takav kvadrat.
04:02
TogetherZajedno, they formobrazac a one-by-twojedan od dva rectanglepravokutnik.
99
230997
3408
Zajedno, oni formiraju "jedan sa dva" pravougaonik.
04:06
BeneathIspod that, I'll put a two-by-twodva po dva squarekvadrat,
100
234405
2549
Ispod njega, stavit ću "dva sa dva",
04:08
and nextsledeći to that, a three-by-threetri po tri squarekvadrat,
101
236954
2795
pored njega "tri sa tri" kvadrat,
04:11
beneathispod that, a five-by-fivepet puta pet squarekvadrat,
102
239749
2001
ispod kvadrat "pet sa pet" ,
04:13
and then an eight-by-eightosam od osam squarekvadrat,
103
241750
1912
a zatim "osam sa osam",
04:15
creatingstvaranje one giantgigant rectanglepravokutnik, right?
104
243662
2572
kreirajući jedan veliki pravougaonik, zar ne?
04:18
Now let me askpitajte you a simplejednostavno questionpitanje:
105
246234
1916
Sada dopustite da vam postavim jednostavno pitanje:
04:20
what is the areapodručje of the rectanglepravokutnik?
106
248150
3656
šta predstavlja površinu ovog pravougaonika?
04:23
Well, on the one handruka,
107
251806
1971
Pa, s jedne strane,
04:25
it's the sumsuma of the areasoblasti
108
253777
2530
to je zbir površina
04:28
of the squareskvadrati insideunutra it, right?
109
256307
1866
sadržanih kvadrata, je li tako?
04:30
Just as we createdstvoreno it.
110
258173
1359
Baš kao što smo ih i kreirali.
04:31
It's one squaredkvadratna plusplus one squaredkvadratna
111
259532
2172
To je jedan na kvadrat plus jedan na kvadrat,
04:33
plusplus two squaredkvadratna plusplus threetri squaredkvadratna
112
261704
2233
sabrano sa kvadratom od dva i tri
04:35
plusplus fivepet squaredkvadratna plusplus eightosam squaredkvadratna. Right?
113
263937
2599
te kvadratom od pet i osam. Jesam li u pravu?
04:38
That's the areapodručje.
114
266536
1857
To je tražena površina.
04:40
On the other handruka, because it's a rectanglepravokutnik,
115
268393
2326
S druge strane, s obzirom na to da se radi o pravougaoniku,
04:42
the areapodručje is equaljednak to its heightvisina timesputa its basebazu,
116
270719
3648
površina je jednaka proizvodu dužine i širine,
04:46
and the heightvisina is clearlyjasno eightosam,
117
274367
2047
širina je očito jednaka osam,
04:48
and the basebazu is fivepet plusplus eightosam,
118
276414
2903
dok je dužina jednaka zbiru pet i osam,
04:51
whichšto is the nextsledeći FibonacciFibonacci numberbroj, 13. Right?
119
279317
3938
koji predstavlja sljedeći Fibonačijev broj, 13. Je li tako?
04:55
So the areapodručje is alsotakođe eightosam timesputa 13.
120
283255
3363
Dakle, površina je jednaka i proizvodu 8 i 13.
04:58
SinceOd we'vemi smo correctlyispravno calculatedizračunati the areapodručje
121
286618
2262
Pošto smo tačno izračunali površinu
05:00
two differentdrugačiji waysnačina,
122
288880
1687
na dva različita načina,
05:02
they have to be the sameisto numberbroj,
123
290567
2172
ona mora biti jednaka,
05:04
and that's why the squareskvadrati of one,
one, two, threetri, fivepet and eightosam
124
292739
3391
i zato je zbir kvadrata od jedan, jedan, dva, tri, pet i osam
05:08
adddodati up to eightosam timesputa 13.
125
296130
2291
jednak proizvodu 8 i 13.
05:10
Now, if we continueNastavite this processproces,
126
298421
2374
Ukoliko nastavimo sa ovim postupkom,
05:12
we'llmi ćemo generategenerirati rectanglespravokutnici of the formobrazac 13 by 21,
127
300795
3978
kreira ćemo pravougaonike dimenzija 13 sa 21,
05:16
21 by 34, and so on.
128
304773
2394
21 sa 34, itd.
05:19
Now checkproveri this out.
129
307167
1409
Pogledajte sada ovo.
05:20
If you dividepodelite 13 by eightosam,
130
308576
2193
Ako podijelimo 13 sa osam,
05:22
you get 1.625.
131
310769
2043
dobijemo 1,625.
05:24
And if you dividepodelite the largerveće numberbroj
by the smallermanji numberbroj,
132
312812
3427
Međutim, što veći broj dijelimo sa manjim brojem
05:28
then these ratiosodnosa get closerbliže and closerbliže
133
316239
2873
ovaj se odnos sve više približava
05:31
to about 1.618,
134
319112
2653
do otprilike 1,618,
05:33
knownpoznato to manymnogi people as the GoldenZlatni RatioOmjer,
135
321765
3301
poznatog mnogima kao "zlatni rez",
05:37
a numberbroj whichšto has fascinatedfasciniran mathematiciansmatematičari,
136
325066
2596
broja koji fascinira matematičare,
05:39
scientistsnaučnici and artistsumetnici for centuriesvekovima.
137
327662
3246
naučnike i umjetnike već stoljećima.
05:42
Now, I showshow all this to you because,
138
330908
2231
Pokazao sam vam sve ovo,
05:45
like so much of mathematicsmatematika,
139
333139
2025
jer pored sve te matematike
05:47
there's a beautifulprelepo sidestrana to it
140
335164
1967
postoji i lijepa strana
05:49
that I fearstrah does not get enoughdosta attentionpažnja
141
337131
2015
kojoj se ne pridaje mnogo pažnje
05:51
in our schoolsškole.
142
339146
1567
u našim školama.
05:52
We spendpotrošiti lots of time learningučenje about calculationproračun,
143
340713
2833
Provodimo mnogo vremena baveći se računanjima,
05:55
but let's not forgetzaboraviti about applicationaplikacija,
144
343546
2756
ali ne treba zaboraviti njihovu primjenu,
05:58
includinguključujući, perhapsmožda, the mostnajviše
importantbitan applicationaplikacija of all,
145
346302
3454
uključujući najvažniju od svih,
06:01
learningučenje how to think.
146
349756
2076
a to je da nas uče kako da razmišljamo.
06:03
If I could summarizesumirati this in one sentencekazna,
147
351832
1957
Ako bih trebao sumirati sve navedeno u jednoj rečenici,
06:05
it would be this:
148
353789
1461
to bi bila ova:
06:07
MathematicsMatematika is not just solvingrešavanje problema for x,
149
355250
3360
Matematika nije samo rješavanje nepoznate x,
06:10
it's alsotakođe figuringfiguring out why.
150
358610
2925
nego i shvatanje njene svrhe.
06:13
Thank you very much.
151
361535
1815
Hvala vam.
06:15
(ApplausePljesak)
152
363350
4407
(Aplauz)
Translated by Nejra Hodžić
Reviewed by Ema Bilbija Zulic

▲Back to top

ABOUT THE SPEAKER
Arthur Benjamin - Mathemagician
Using daring displays of algorithmic trickery, lightning calculator and number wizard Arthur Benjamin mesmerizes audiences with mathematical mystery and beauty.

Why you should listen

Arthur Benjamin makes numbers dance. In his day job, he's a professor of math at Harvey Mudd College; in his other day job, he's a "Mathemagician," taking the stage in his tuxedo to perform high-speed mental calculations, memorizations and other astounding math stunts. It's part of his drive to teach math and mental agility in interesting ways, following in the footsteps of such heroes as Martin Gardner.

Benjamin is the co-author, with Michael Shermer, of Secrets of Mental Math (which shares his secrets for rapid mental calculation), as well as the co-author of the MAA award-winning Proofs That Really Count: The Art of Combinatorial Proof. For a glimpse of his broad approach to math, see the list of research talks on his website, which seesaws between high-level math (such as his "Vandermonde's Determinant and Fibonacci SAWs," presented at MIT in 2004) and engaging math talks for the rest of us ("An Amazing Mathematical Card Trick").

More profile about the speaker
Arthur Benjamin | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee