ABOUT THE SPEAKER
Arthur Benjamin - Mathemagician
Using daring displays of algorithmic trickery, lightning calculator and number wizard Arthur Benjamin mesmerizes audiences with mathematical mystery and beauty.

Why you should listen

Arthur Benjamin makes numbers dance. In his day job, he's a professor of math at Harvey Mudd College; in his other day job, he's a "Mathemagician," taking the stage in his tuxedo to perform high-speed mental calculations, memorizations and other astounding math stunts. It's part of his drive to teach math and mental agility in interesting ways, following in the footsteps of such heroes as Martin Gardner.

Benjamin is the co-author, with Michael Shermer, of Secrets of Mental Math (which shares his secrets for rapid mental calculation), as well as the co-author of the MAA award-winning Proofs That Really Count: The Art of Combinatorial Proof. For a glimpse of his broad approach to math, see the list of research talks on his website, which seesaws between high-level math (such as his "Vandermonde's Determinant and Fibonacci SAWs," presented at MIT in 2004) and engaging math talks for the rest of us ("An Amazing Mathematical Card Trick").

More profile about the speaker
Arthur Benjamin | Speaker | TED.com
TEDGlobal 2013

Arthur Benjamin: The magic of Fibonacci numbers

阿瑟·本雅明: 神奇的斐波那契数列

Filmed:
7,057,274 views

数学不仅仅是一堆逻辑和函数,它还可以很酷。数学家阿瑟-本杰明向我们展示了斐波纳契数列的隐含魅力,以及种种看起来很神奇的巧合(同时提醒你,数学也可以是激动人心的!)。
- Mathemagician
Using daring displays of algorithmic trickery, lightning calculator and number wizard Arthur Benjamin mesmerizes audiences with mathematical mystery and beauty. Full bio

Double-click the English transcript below to play the video.

00:12
So why do we learn学习 mathematics数学?
0
613
3039
我们为什么要学习数学?
00:15
Essentially实质上, for three reasons原因:
1
3652
2548
根本原因有三个:
00:18
calculation计算,
2
6200
1628
计算,
00:19
application应用,
3
7828
1900
应用,
00:21
and last, and unfortunately不幸 least最小
4
9728
2687
最后一个,很不幸的,
00:24
in terms条款 of the time we give it,
5
12415
2105
从时间分配来看也是最少的,
00:26
inspiration灵感.
6
14520
1922
激发灵感.
00:28
Mathematics数学 is the science科学 of patterns模式,
7
16442
2272
数学是研究规律的科学,
00:30
and we study研究 it to learn学习 how to think logically逻辑,
8
18714
3358
我们通过学习数学来训练逻辑思维能力,
00:34
critically危重 and creatively创造性,
9
22072
2527
思辩能力以及创造力,
00:36
but too much of the mathematics数学
that we learn学习 in school学校
10
24599
2926
但是我们在学校里面学习到的数学,
00:39
is not effectively有效 motivated动机,
11
27525
2319
根本没有激起我们的兴趣
00:41
and when our students学生们 ask,
12
29844
1425
每当我们的学生问起
00:43
"Why are we learning学习 this?"
13
31269
1675
"我们为什么要学这个?"
00:44
then they often经常 hear that they'll他们会 need it
14
32944
1961
他们得到的答案往往是
00:46
in an upcoming即将到来 math数学 class or on a future未来 test测试.
15
34905
3265
考试要考, 或者后续的数学课程中要用到.
00:50
But wouldn't不会 it be great
16
38170
1802
有没有可能
00:51
if every一切 once一旦 in a while we did mathematics数学
17
39972
2518
哪怕只有那么一小会儿, 我们研究数学
00:54
simply只是 because it was fun开玩笑 or beautiful美丽
18
42490
2949
仅仅是因为自己的兴趣, 或是数学的优美
00:57
or because it excited兴奋 the mind心神?
19
45439
2090
那岂不是很棒?
00:59
Now, I know many许多 people have not
20
47529
1722
现在, 我知道很多人
01:01
had the opportunity机会 to see how this can happen发生,
21
49251
2319
一直没有机会来体验这一点,
01:03
so let me give you a quick example
22
51570
1829
所以现在我们就来体验一下
01:05
with my favorite喜爱 collection采集 of numbers数字,
23
53399
2341
以我最喜欢的数列
01:07
the Fibonacci斐波那契 numbers数字. (Applause掌声)
24
55740
2728
斐波纳契数列为例.(掌声)
01:10
Yeah! I already已经 have Fibonacci斐波那契 fans球迷 here.
25
58468
2052
太好了! 看来在座的也有喜欢斐波纳契的.
01:12
That's great.
26
60520
1316
非常好.
01:13
Now these numbers数字 can be appreciated赞赏
27
61836
2116
我们可以从多种不同的角度
01:15
in many许多 different不同 ways方法.
28
63952
1878
来欣赏斐波纳契序列.
01:17
From the standpoint立场 of calculation计算,
29
65830
2709
从计算的角度
01:20
they're as easy简单 to understand理解
30
68539
1677
斐波纳契数列很容易被理解
01:22
as one plus one, which哪一个 is two.
31
70216
2554
1 加 1, 等于 2
01:24
Then one plus two is three,
32
72770
2003
1 加 2 等于 3
01:26
two plus three is five, three plus five is eight,
33
74773
3014
2 加 3 等于 5, 3 加 5 等于 8
01:29
and so on.
34
77787
1525
以此类推.
01:31
Indeed确实, the person we call Fibonacci斐波那契
35
79312
2177
事实上, 那个我们称呼"斐波纳契"的人
01:33
was actually其实 named命名 Leonardo莱昂纳多 of Pisa比萨,
36
81489
3180
真实的名字叫列昂纳多, 来自比萨
01:36
and these numbers数字 appear出现 in his book "Liber莱博 Abaci算盘,"
37
84669
3053
这个数列出自他的书《算盘宝典》("Liber Abaci")
01:39
which哪一个 taught the Western西 world世界
38
87722
1650
这本书奠定了西方世界的数学基础
01:41
the methods方法 of arithmetic算术 that we use today今天.
39
89372
2827
其中的算术方法一直沿用至今.
01:44
In terms条款 of applications应用,
40
92199
1721
从应用的角度来看,
01:45
Fibonacci斐波那契 numbers数字 appear出现 in nature性质
41
93920
2183
斐波纳契数列在自然界中经常
01:48
surprisingly出奇 often经常.
42
96103
1857
神奇的出现.
01:49
The number of petals花瓣 on a flower
43
97960
1740
一朵花的花瓣数量
01:51
is typically一般 a Fibonacci斐波那契 number,
44
99700
1862
一般是一个斐波纳契数,
01:53
or the number of spirals螺旋 on a sunflower向日葵
45
101562
2770
向日葵的螺旋,
01:56
or a pineapple菠萝
46
104332
1411
菠萝表面的凸起,
01:57
tends趋向 to be a Fibonacci斐波那契 number as well.
47
105743
2394
也都对应着某个斐波纳契数.
02:00
In fact事实, there are many许多 more
applications应用 of Fibonacci斐波那契 numbers数字,
48
108137
3503
事实上还有很多斐波纳契数的应用实例,
02:03
but what I find most inspirational励志 about them
49
111640
2560
而我发现这其中最能给人启发的
02:06
are the beautiful美丽 number patterns模式 they display显示.
50
114200
2734
是这些数字呈现出来的漂亮模式.
02:08
Let me show显示 you one of my favorites最爱.
51
116934
2194
让我们看下我最喜欢的一个.
02:11
Suppose假设 you like to square广场 numbers数字,
52
119128
2221
假设你喜欢计算数的平方.
02:13
and frankly坦率地说, who doesn't? (Laughter笑声)
53
121349
2675
坦白说, 谁不喜欢?(笑声)
02:16
Let's look at the squares广场
54
124040
2240
让我们计算一下
02:18
of the first few少数 Fibonacci斐波那契 numbers数字.
55
126280
1851
头几个斐波纳契数的平方.
02:20
So one squared平方 is one,
56
128131
2030
1的平方是1,
02:22
two squared平方 is four, three squared平方 is nine,
57
130161
2317
2的平方是4, 3的平方是9,
02:24
five squared平方 is 25, and so on.
58
132478
3173
5的平方是25, 以此类推.
02:27
Now, it's no surprise
59
135651
1901
毫不意外的,
02:29
that when you add consecutive连续 Fibonacci斐波那契 numbers数字,
60
137552
2828
当你加上两个连续的斐波纳契数字时,
02:32
you get the next下一个 Fibonacci斐波那契 number. Right?
61
140380
2032
你得到了下一个斐波纳契数, 没错吧?
02:34
That's how they're created创建.
62
142412
1395
它们就是这么定义的.
02:35
But you wouldn't不会 expect期望 anything special特别
63
143807
1773
但是你不知道把斐波纳契数的平方
02:37
to happen发生 when you add the squares广场 together一起.
64
145580
3076
加起来会得到什么有意思的结果.
02:40
But check this out.
65
148656
1346
来尝试一下.
02:42
One plus one gives us two,
66
150002
2001
1 加 1 是 2,
02:44
and one plus four gives us five.
67
152003
2762
1 加 4 是 5,
02:46
And four plus nine is 13,
68
154765
2195
4 加 9 是 13,
02:48
nine plus 25 is 34,
69
156960
3213
9 加 25 是 34,
02:52
and yes, the pattern模式 continues继续.
70
160173
2659
没错, 还是这个规律.
02:54
In fact事实, here's这里的 another另一个 one.
71
162832
1621
事实上, 还有一个规律.
02:56
Suppose假设 you wanted to look at
72
164453
1844
假如你想计算一下
02:58
adding加入 the squares广场 of
the first few少数 Fibonacci斐波那契 numbers数字.
73
166297
2498
头几个斐波纳契数的平方和,
03:00
Let's see what we get there.
74
168795
1608
看看结果是什么.
03:02
So one plus one plus four is six.
75
170403
2139
1 加 1 加 4 是 6,
03:04
Add nine to that, we get 15.
76
172542
3005
再加上 9, 得到 15,
03:07
Add 25, we get 40.
77
175547
2213
再加上 25, 得到 40,
03:09
Add 64, we get 104.
78
177760
2791
再加上 64, 得到 104.
03:12
Now look at those numbers数字.
79
180551
1652
回头来看看这些数字.
03:14
Those are not Fibonacci斐波那契 numbers数字,
80
182203
2384
他们不是斐波纳契数,
03:16
but if you look at them closely密切,
81
184587
1879
但是如果你看得够仔细,
03:18
you'll你会 see the Fibonacci斐波那契 numbers数字
82
186466
1883
你能看到他们的背后
03:20
buried隐藏 inside of them.
83
188349
2178
隐藏着的斐波纳契数.
03:22
Do you see it? I'll show显示 it to you.
84
190527
2070
看到了么? 让我写给你看.
03:24
Six is two times three, 15 is three times five,
85
192597
3733
6 等于 2 乘 3, 15 等于 3 乘 5,
03:28
40 is five times eight,
86
196330
2059
40 等于 5 乘 8,
03:30
two, three, five, eight, who do we appreciate欣赏?
87
198389
2928
2, 3, 5, 8 我们看到了什么?
03:33
(Laughter笑声)
88
201317
1187
(笑声)
03:34
Fibonacci斐波那契! Of course课程.
89
202504
2155
斐波纳契! 当然, 当然.
03:36
Now, as much fun开玩笑 as it is to discover发现 these patterns模式,
90
204659
3783
现在我们已经发现了这些好玩的模式,
03:40
it's even more satisfying满意的 to understand理解
91
208442
2482
更能满足你们好奇心的事情是
03:42
why they are true真正.
92
210924
1958
弄清楚背后的原因.
03:44
Let's look at that last equation方程.
93
212882
1889
让我们看看最后这个等式.
03:46
Why should the squares广场 of one, one,
two, three, five and eight
94
214771
3868
为什么 1, 1, 2, 3, 5 和 8 的平方
03:50
add up to eight times 13?
95
218639
2545
加起来等于 8 乘以 13?
03:53
I'll show显示 you by drawing画画 a simple简单 picture图片.
96
221184
2961
我通过一个简单的图形来解释.
03:56
We'll start开始 with a one-by-one一个接一个 square广场
97
224145
2687
首先我们画一个 1 乘 1 的方块,
03:58
and next下一个 to that put another另一个 one-by-one一个接一个 square广场.
98
226832
4165
然后再在旁边放一个相同尺寸的方块.
04:02
Together一起, they form形成 a one-by-two一对二 rectangle长方形.
99
230997
3408
拼起来之后得到了一个 1 乘 2 的矩形.
04:06
Beneath下面 that, I'll put a two-by-two两两 square广场,
100
234405
2549
在这个下面再放一个 2 乘 2 的方块,
04:08
and next下一个 to that, a three-by-three三乘三 square广场,
101
236954
2795
之后贴着再放一个 3 乘 3 的方块,
04:11
beneath下面 that, a five-by-five五乘以五 square广场,
102
239749
2001
然后再在下面放一个 5 乘 5 的矩形,
04:13
and then an eight-by-eight八乘八 square广场,
103
241750
1912
之后是一个 8 乘 8 的方块.
04:15
creating创建 one giant巨人 rectangle长方形, right?
104
243662
2572
得到了一个大的矩形, 对吧?
04:18
Now let me ask you a simple简单 question:
105
246234
1916
现在问大家一个简单的问题:
04:20
what is the area of the rectangle长方形?
106
248150
3656
这个矩形的面积是多少?
04:23
Well, on the one hand,
107
251806
1971
一方面,
04:25
it's the sum of the areas
108
253777
2530
它的面积就是
04:28
of the squares广场 inside it, right?
109
256307
1866
组成它的小矩形的面积之和, 对吧?
04:30
Just as we created创建 it.
110
258173
1359
就是我们用到的矩形之和
04:31
It's one squared平方 plus one squared平方
111
259532
2172
它的面积是 1 的平方加上 1 的平方
04:33
plus two squared平方 plus three squared平方
112
261704
2233
加上 2 的平方加上 3 的平方
04:35
plus five squared平方 plus eight squared平方. Right?
113
263937
2599
加上 5 的平方加上 8 的平方. 对吧?
04:38
That's the area.
114
266536
1857
这就是面积.
04:40
On the other hand, because it's a rectangle长方形,
115
268393
2326
另一方面, 因为这是矩形,
04:42
the area is equal等于 to its height高度 times its base基础,
116
270719
3648
面积就等于长乘高,
04:46
and the height高度 is clearly明确地 eight,
117
274367
2047
高等于 8,
04:48
and the base基础 is five plus eight,
118
276414
2903
长是 5 加 8,
04:51
which哪一个 is the next下一个 Fibonacci斐波那契 number, 13. Right?
119
279317
3938
也是一个斐波纳契数, 13, 是不是?
04:55
So the area is also eight times 13.
120
283255
3363
所以面积就是 8 乘 13.
04:58
Since以来 we've我们已经 correctly正确地 calculated计算 the area
121
286618
2262
因为我们用两种不同的方式计算面积,
05:00
two different不同 ways方法,
122
288880
1687
同样一个矩形的面积
05:02
they have to be the same相同 number,
123
290567
2172
一定是一样的,
05:04
and that's why the squares广场 of one,
one, two, three, five and eight
124
292739
3391
这样就是为什么 1, 1, 2, 3, 5, 8 的平方和,
05:08
add up to eight times 13.
125
296130
2291
等于 8 乘 13.
05:10
Now, if we continue继续 this process处理,
126
298421
2374
如果我们继续探索下去,
05:12
we'll generate生成 rectangles矩形 of the form形成 13 by 21,
127
300795
3978
我们会得到 13 乘 21 的矩形,
05:16
21 by 34, and so on.
128
304773
2394
21 乘 34 的矩形, 以此类推.
05:19
Now check this out.
129
307167
1409
再来看看这个.
05:20
If you divide划分 13 by eight,
130
308576
2193
如果你用 8 去除 13,
05:22
you get 1.625.
131
310769
2043
结果是 1.625.
05:24
And if you divide划分 the larger number
by the smaller number,
132
312812
3427
如果用大的斐波纳契数除以前一个小的斐波纳契数
05:28
then these ratios get closer接近 and closer接近
133
316239
2873
他们的比例会越来越接近
05:31
to about 1.618,
134
319112
2653
1.618,
05:33
known已知 to many许多 people as the Golden金色 Ratio,
135
321765
3301
这就是很多人知道的黄金分割率,
05:37
a number which哪一个 has fascinated入迷 mathematicians数学家,
136
325066
2596
一个几个世纪以来, 让无数数学家, 科学家和艺术家
05:39
scientists科学家们 and artists艺术家 for centuries百年.
137
327662
3246
都非常着迷的数字.
05:42
Now, I show显示 all this to you because,
138
330908
2231
我之所以向你们展示这些是因为,
05:45
like so much of mathematics数学,
139
333139
2025
很多这样的数学(知识),
05:47
there's a beautiful美丽 side to it
140
335164
1967
都有其秒不可言的一面
05:49
that I fear恐惧 does not get enough足够 attention注意
141
337131
2015
而我担心这一面并没有在学校里
05:51
in our schools学校.
142
339146
1567
得到展现.
05:52
We spend lots of time learning学习 about calculation计算,
143
340713
2833
我们花了很多时间去学习算术,
05:55
but let's not forget忘记 about application应用,
144
343546
2756
但是请不要忘记数学在实际中的应用,
05:58
including包含, perhaps也许, the most
important重要 application应用 of all,
145
346302
3454
包括可能是最重要的一种应用形式,
06:01
learning学习 how to think.
146
349756
2076
学会如何思考.
06:03
If I could summarize总结 this in one sentence句子,
147
351832
1957
把我今天所说的浓缩成一句,
06:05
it would be this:
148
353789
1461
那就是:
06:07
Mathematics数学 is not just solving for x,
149
355250
3360
数学, 不仅仅是求出X等于多少,
06:10
it's also figuring盘算 out why.
150
358610
2925
还要能指出为什么.
06:13
Thank you very much.
151
361535
1815
感谢大家.
06:15
(Applause掌声)
152
363350
4407
(掌声)
Translated by Psycho Decoder
Reviewed by Tingting Zhao

▲Back to top

ABOUT THE SPEAKER
Arthur Benjamin - Mathemagician
Using daring displays of algorithmic trickery, lightning calculator and number wizard Arthur Benjamin mesmerizes audiences with mathematical mystery and beauty.

Why you should listen

Arthur Benjamin makes numbers dance. In his day job, he's a professor of math at Harvey Mudd College; in his other day job, he's a "Mathemagician," taking the stage in his tuxedo to perform high-speed mental calculations, memorizations and other astounding math stunts. It's part of his drive to teach math and mental agility in interesting ways, following in the footsteps of such heroes as Martin Gardner.

Benjamin is the co-author, with Michael Shermer, of Secrets of Mental Math (which shares his secrets for rapid mental calculation), as well as the co-author of the MAA award-winning Proofs That Really Count: The Art of Combinatorial Proof. For a glimpse of his broad approach to math, see the list of research talks on his website, which seesaws between high-level math (such as his "Vandermonde's Determinant and Fibonacci SAWs," presented at MIT in 2004) and engaging math talks for the rest of us ("An Amazing Mathematical Card Trick").

More profile about the speaker
Arthur Benjamin | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee