ABOUT THE SPEAKER
Arthur Benjamin - Mathemagician
Using daring displays of algorithmic trickery, lightning calculator and number wizard Arthur Benjamin mesmerizes audiences with mathematical mystery and beauty.

Why you should listen

Arthur Benjamin makes numbers dance. In his day job, he's a professor of math at Harvey Mudd College; in his other day job, he's a "Mathemagician," taking the stage in his tuxedo to perform high-speed mental calculations, memorizations and other astounding math stunts. It's part of his drive to teach math and mental agility in interesting ways, following in the footsteps of such heroes as Martin Gardner.

Benjamin is the co-author, with Michael Shermer, of Secrets of Mental Math (which shares his secrets for rapid mental calculation), as well as the co-author of the MAA award-winning Proofs That Really Count: The Art of Combinatorial Proof. For a glimpse of his broad approach to math, see the list of research talks on his website, which seesaws between high-level math (such as his "Vandermonde's Determinant and Fibonacci SAWs," presented at MIT in 2004) and engaging math talks for the rest of us ("An Amazing Mathematical Card Trick").

More profile about the speaker
Arthur Benjamin | Speaker | TED.com
TEDGlobal 2013

Arthur Benjamin: The magic of Fibonacci numbers

Arthur Benjamin: Keajaiban nombor Fibonacci

Filmed:
7,057,274 views

Matematik ialah sesuatu yang logik, berfungsi dan.. hebat. Ahli Mate-magik, Arthur Benjamin, meneroka sifat-sifat tersembunyi dalam satu set nombor yang pelik dan menarik, iaitu siri Fibonacci. (Dan mengingatkan anda bahawa matematik juga memberikan inspirasi!)
- Mathemagician
Using daring displays of algorithmic trickery, lightning calculator and number wizard Arthur Benjamin mesmerizes audiences with mathematical mystery and beauty. Full bio

Double-click the English transcript below to play the video.

00:12
So why do we learnbelajar mathematicsmatematik?
0
613
3039
Kenapa kita belajar matematik?
00:15
EssentiallyPada asasnya, for threetiga reasonssebab:
1
3652
2548
Asasnya, kerana tiga sebab:
00:18
calculationpengiraan,
2
6200
1628
pengiraan, aplikasi,
00:19
applicationpermohonan,
3
7828
1900
pengiraan, aplikasi,
00:21
and last, and unfortunatelymalangnya leastpaling kurang
4
9728
2687
dan yang terakhir, yang malangnya
kurang diberikan perhatian,
00:24
in termsterma of the time we give it,
5
12415
2105
dan yang terakhir, yang malangnya
kurang diberikan perhatian,
00:26
inspirationinspirasi.
6
14520
1922
inspirasi.
00:28
MathematicsMatematik is the sciencesains of patternscorak,
7
16442
2272
Matematik merupakan sains corak.
00:30
and we studybelajar it to learnbelajar how to think logicallysecara logik,
8
18714
3358
Kita belajar berfikir secara logik, kritikal dan kreatif,
00:34
criticallykritikal and creativelysecara kreatif,
9
22072
2527
Kita belajar berfikir secara logik, kritikal dan kreatif,
00:36
but too much of the mathematicsmatematik
that we learnbelajar in schoolsekolah
10
24599
2926
tetapi yang diajar di sekolah,
00:39
is not effectivelyberkesan motivatedbermotivasi,
11
27525
2319
tidak memberikan rangsangan yang baik.
00:41
and when our studentspelajar asktanya,
12
29844
1425
Apabila pelajar kita bertanya,
00:43
"Why are we learningpembelajaran this?"
13
31269
1675
"Kenapa kita belajar ni?"
00:44
then they oftenselalunya heardengar that they'llmereka akan need it
14
32944
1961
Ini penting untuk kelas yang berikutnya
00:46
in an upcomingakan datang mathmatematik classkelas or on a futuremasa depan testujian.
15
34905
3265
atau ujian yang akan datang.
00:50
But wouldn'ttidak akan it be great
16
38170
1802
Bukankah lebih bagus
00:51
if everysetiap oncesekali in a while we did mathematicsmatematik
17
39972
2518
kalau kadangkala kita membuat matematik
00:54
simplysemata-mata because it was funkeseronokan or beautifulcantik
18
42490
2949
kerana ia menyeronokkan, mengasyikkan
00:57
or because it excitedteruja the mindfikiran?
19
45439
2090
atau kerana ia merangsang minda?
00:59
Now, I know manyramai people have not
20
47529
1722
Ramai yang tak berpeluang untuk
01:01
had the opportunitypeluang to see how this can happenberlaku,
21
49251
2319
memahami bagaimana ini boleh berlaku,
01:03
so let me give you a quickcepat examplecontohnya
22
51570
1829
jadi biar saya berikan contoh
01:05
with my favoritekegemaran collectionkoleksi of numbersnombor,
23
53399
2341
dengan koleksi nombor kegemaran saya,
01:07
the FibonacciFibonacci numbersnombor. (ApplauseTepukan)
24
55740
2728
nombor Fibonacci. (Tepukan)
01:10
Yeah! I alreadysudah have FibonacciFibonacci fanspeminat here.
25
58468
2052
Ya, ada peminat Fibonacci di sini. Bagus.
01:12
That's great.
26
60520
1316
Ya, ada peminat Fibonacci di sini. Bagus.
01:13
Now these numbersnombor can be appreciateddihargai
27
61836
2116
Nombor-nombor ini boleh dihargai
01:15
in manyramai differentberbeza wayscara.
28
63952
1878
dalam berbagai-bagai cara.
01:17
From the standpointsudut pandangan of calculationpengiraan,
29
65830
2709
Dari sudut pengiraan,
01:20
they're as easymudah to understandfaham
30
68539
1677
ia sangat senang difahami
01:22
as one plusditambah one, whichyang mana is two.
31
70216
2554
seperti 1 + 1 = 2,
01:24
Then one plusditambah two is threetiga,
32
72770
2003
1 + 2 = 3,
01:26
two plusditambah threetiga is fivelima, threetiga plusditambah fivelima is eightlapan,
33
74773
3014
2 + 3 = 5,
3 + 5 = 8,
01:29
and so on.
34
77787
1525
dan begitulah seterusnya.
01:31
IndeedSesungguhnya, the personorang we call FibonacciFibonacci
35
79312
2177
Orang yang dikenali sebagai Fibonacci
01:33
was actuallysebenarnya namedbernama LeonardoLeonardo of PisaPisa,
36
81489
3180
sebenarnya bernama Leonardo of Pisa,
01:36
and these numbersnombor appearmuncul in his bookbuku "LiberSejarah AbaciSepua (Abacus),"
37
84669
3053
nombor-nombor ini diterangkan
dalam buku "Liber Abaci",
01:39
whichyang mana taughtdiajar the WesternWestern worlddunia
38
87722
1650
di mana dunia Barat telah diajar
01:41
the methodskaedah of arithmeticaritmetik that we use todayhari ini.
39
89372
2827
kaedah aritmetik yang digunakan sekarang.
01:44
In termsterma of applicationsaplikasi,
40
92199
1721
Dari segi aplikasi, nombor Fibonacci
01:45
FibonacciFibonacci numbersnombor appearmuncul in naturesifat
41
93920
2183
selalu muncul dalam alam semula jadi.
01:48
surprisinglymengejutkan oftenselalunya.
42
96103
1857
selalu muncul dalam alam semula jadi.
01:49
The numbernombor of petalskelopak on a flowerbunga
43
97960
1740
Bilangan kelopak bunga
01:51
is typicallybiasanya a FibonacciFibonacci numbernombor,
44
99700
1862
selalunya ialah nombor Fibonacci,
01:53
or the numbernombor of spiralsbentuk on a sunflowerSunflower
45
101562
2770
lingkaran bunga matahari atau nenas,
01:56
or a pineapplenenas
46
104332
1411
lingkaran bunga matahari atau nenas,
01:57
tendscenderung to be a FibonacciFibonacci numbernombor as well.
47
105743
2394
biasanya merupakan nombor Fibonacci.
02:00
In factfakta, there are manyramai more
applicationsaplikasi of FibonacciFibonacci numbersnombor,
48
108137
3503
Banyak lagi aplikasi nombor Fibonacci,
02:03
but what I find mostpaling banyak inspirationalmenjadi sumber inspirasi about them
49
111640
2560
yang paling memberikan inspirasi
02:06
are the beautifulcantik numbernombor patternscorak they displaypaparan.
50
114200
2734
ialah corak nombor yang dipaparkan.
02:08
Let me showtunjukkan you one of my favoriteskegemaran.
51
116934
2194
Ini salah satu kegemaran saya.
02:11
SupposeAndaikan you like to squarepersegi numbersnombor,
52
119128
2221
Katakan anda suka nombor kuasa dua,
02:13
and franklyterus terang, who doesn't? (LaughterGelak ketawa)
53
121349
2675
siapa yang tak suka, kan? (Gelak ketawa)
02:16
Let's look at the squaresdataran
54
124040
2240
Mari kita lihat nombor kuasa dua
02:18
of the first fewbeberapa FibonacciFibonacci numbersnombor.
55
126280
1851
bagi nombor-nombor Fibonacci.
02:20
So one squaredkuasa dua is one,
56
128131
2030
1 kuasa dua = 1,
02:22
two squaredkuasa dua is fourempat, threetiga squaredkuasa dua is ninesembilan,
57
130161
2317
2 kuasa dua = 4,
3 kuasa dua = 9,
02:24
fivelima squaredkuasa dua is 25, and so on.
58
132478
3173
5 kuasa dua = 25,
dan seterusnya.
02:27
Now, it's no surprisekejutan
59
135651
1901
Jadi, tak hairanlah apabila
02:29
that when you addTambah consecutiveberturut-turut FibonacciFibonacci numbersnombor,
60
137552
2828
jumlah dua nombor Fibonacci yang berturut
02:32
you get the nextseterusnya FibonacciFibonacci numbernombor. Right?
61
140380
2032
menghasilkan nombor Fibonacci yang berikutnya.
02:34
That's how they're createddicipta.
62
142412
1395
Itu merupakan cara ia dicipta.
02:35
But you wouldn'ttidak akan expectmenjangkakan anything specialistimewa
63
143807
1773
Anda tak akan menjangkakan apa-apa jika
02:37
to happenberlaku when you addTambah the squaresdataran togetherbersama-sama.
64
145580
3076
nombor-nombor kuasa dua tersebut ditambah.
02:40
But checksemak this out.
65
148656
1346
Cuba tengok ni.
02:42
One plusditambah one givesmemberi us two,
66
150002
2001
1 + 1 = 2,
02:44
and one plusditambah fourempat givesmemberi us fivelima.
67
152003
2762
1 + 4 = 5,
02:46
And fourempat plusditambah ninesembilan is 13,
68
154765
2195
4 + 9 = 13,
02:48
ninesembilan plusditambah 25 is 34,
69
156960
3213
9 + 25 = 34,
02:52
and yes, the patterncorak continuesterus.
70
160173
2659
dan corak itu berterusan.
02:54
In factfakta, here'sdi sini anotherlain one.
71
162832
1621
Ini satu lagi contoh.
02:56
SupposeAndaikan you wanted to look at
72
164453
1844
Katakan anda tambah beberapa
02:58
addingtambahnya the squaresdataran of
the first fewbeberapa FibonacciFibonacci numbersnombor.
73
166297
2498
nombor kuasa dua Fibonacci yang awal.
03:00
Let's see what we get there.
74
168795
1608
Mari kita lihat apa hasilnya.
03:02
So one plusditambah one plusditambah fourempat is sixenam.
75
170403
2139
1 + 1 + 4 = 6.
03:04
AddTambah ninesembilan to that, we get 15.
76
172542
3005
6 + 9 = 15.
03:07
AddTambah 25, we get 40.
77
175547
2213
15 + 25 = 40.
03:09
AddTambah 64, we get 104.
78
177760
2791
40 + 64 = 104.
03:12
Now look at those numbersnombor.
79
180551
1652
Tengok nombor-nombor ini.
03:14
Those are not FibonacciFibonacci numbersnombor,
80
182203
2384
Ia bukan nombor-nombor Fibonacci.
03:16
but if you look at them closelyrapat,
81
184587
1879
Tetapi jika anda lihat dengan teliti,
03:18
you'llawak akan see the FibonacciFibonacci numbersnombor
82
186466
1883
ada nombor Fibonacci
03:20
burieddikebumikan insidedalam of them.
83
188349
2178
yang tersembunyi di dalamnya.
03:22
Do you see it? I'll showtunjukkan it to you.
84
190527
2070
Nampak tak? Saya akan tunjukkan.
03:24
SixEnam is two timeskali threetiga, 15 is threetiga timeskali fivelima,
85
192597
3733
6 = 2 x 3,
15 = 3 x 5,
03:28
40 is fivelima timeskali eightlapan,
86
196330
2059
40 = 5 x 8,
03:30
two, threetiga, fivelima, eightlapan, who do we appreciatemenghargai?
87
198389
2928
2, 3, 5, 8, terima kasih kepada siapa?
03:33
(LaughterGelak ketawa)
88
201317
1187
(Gelak ketawa)
03:34
FibonacciFibonacci! Of coursekursus.
89
202504
2155
Semestinya, Fibonacci!
03:36
Now, as much funkeseronokan as it is to discovertemui these patternscorak,
90
204659
3783
Corak ini memang menyeronokkan,
03:40
it's even more satisfyingmemuaskan to understandfaham
91
208442
2482
tapi lebih memuaskan jika kita faham
03:42
why they are truebenar.
92
210924
1958
kenapa ia begitu.
03:44
Let's look at that last equationpersamaan.
93
212882
1889
Cuba lihat persamaan yang terakhir.
03:46
Why should the squaresdataran of one, one,
two, threetiga, fivelima and eightlapan
94
214771
3868
Kenapa kuasa dua kepada 1, 1, 2, 3, 5 dan 8
03:50
addTambah up to eightlapan timeskali 13?
95
218639
2545
jumlahnya sama dengan 8 x 13?
03:53
I'll showtunjukkan you by drawinglukisan a simplemudah picturegambar.
96
221184
2961
Saya akan lukiskan satu gambar.
03:56
We'llKami akan startmulakan with a one-by-onesatu demi satu squarepersegi
97
224145
2687
Ada satu segi empat 1 x 1,
03:58
and nextseterusnya to that put anotherlain one-by-onesatu demi satu squarepersegi.
98
226832
4165
dan satu lagi segi empat 1 x 1.
04:02
TogetherBersama-sama, they formborang a one-by-twosatu-dua rectanglesegi empat tepat.
99
230997
3408
Hasilnya segi empat tepat 1 x 2.
04:06
BeneathDi bawah that, I'll put a two-by-twodua-dua squarepersegi,
100
234405
2549
Letakkan segi empat 2 x 2 di bawah,
04:08
and nextseterusnya to that, a three-by-threetiga oleh tiga squarepersegi,
101
236954
2795
dan segi empat 3 x 3 di sebelah,
04:11
beneathdi bawah that, a five-by-fivelima oleh lima squarepersegi,
102
239749
2001
segi empat 5 x 5 di bawah,
04:13
and then an eight-by-eightlapan oleh lapan squarepersegi,
103
241750
1912
dan satu lagi segi empat 8 x 8,
04:15
creatingmencipta one giantgergasi rectanglesegi empat tepat, right?
104
243662
2572
membentuk segi empat tepat yang besar, kan?
04:18
Now let me asktanya you a simplemudah questionsoalan:
105
246234
1916
Izinkan saya bertanya,
04:20
what is the areakawasan of the rectanglesegi empat tepat?
106
248150
3656
berapakah luas segi empat tepat itu?
04:23
Well, on the one handtangan,
107
251806
1971
Yang pertama, ia merupakan jumlah luas
04:25
it's the sumjumlah of the areaskawasan-kawasan
108
253777
2530
Yang pertama, ia merupakan jumlah luas
04:28
of the squaresdataran insidedalam it, right?
109
256307
1866
semua segi empat di dalamnya, kan?
04:30
Just as we createddicipta it.
110
258173
1359
Sama seperti yang kita buat tadi.
04:31
It's one squaredkuasa dua plusditambah one squaredkuasa dua
111
259532
2172
1 kuasa dua + 1 kuasa dua,
04:33
plusditambah two squaredkuasa dua plusditambah threetiga squaredkuasa dua
112
261704
2233
+ 2 kuasa dua, + 3 kuasa dua,
04:35
plusditambah fivelima squaredkuasa dua plusditambah eightlapan squaredkuasa dua. Right?
113
263937
2599
+ 5 kuasa dua, + 8 kuasa dua.
04:38
That's the areakawasan.
114
266536
1857
Itu merupakan luasnya.
04:40
On the other handtangan, because it's a rectanglesegi empat tepat,
115
268393
2326
Yang kedua, luas sebuah segi empat tepat,
04:42
the areakawasan is equalsama to its heightketinggian timeskali its baseasas,
116
270719
3648
ialah tinggi x tapak,
04:46
and the heightketinggian is clearlyjelas eightlapan,
117
274367
2047
tinggi = 8,
04:48
and the baseasas is fivelima plusditambah eightlapan,
118
276414
2903
tapak = 5 + 8,
04:51
whichyang mana is the nextseterusnya FibonacciFibonacci numbernombor, 13. Right?
119
279317
3938
iaitu 13, nombor Fibonacci yang berikutnya, kan?
04:55
So the areakawasan is alsojuga eightlapan timeskali 13.
120
283255
3363
Jadi luasnya ialah 8 x 13 juga.
04:58
SinceSejak we'vekami sudah correctlybetul calculateddikira the areakawasan
121
286618
2262
Kita telah mengira luas
05:00
two differentberbeza wayscara,
122
288880
1687
dengan dua cara yang berbeza,
05:02
they have to be the samesama numbernombor,
123
290567
2172
hasilnya mesti sama,
05:04
and that's why the squaresdataran of one,
one, two, threetiga, fivelima and eightlapan
124
292739
3391
sebab itu kuasa dua kepada 1, 1, 2, 3, 5 dan 8,
05:08
addTambah up to eightlapan timeskali 13.
125
296130
2291
jumlahnya sama dengan 8 x 13.
05:10
Now, if we continueteruskan this processproses,
126
298421
2374
Jika kita teruskan proses ini,
05:12
we'llkita akan generatemenjana rectanglessegi empat tepat of the formborang 13 by 21,
127
300795
3978
hasilnya ialah segi empat tepat 13 x 21,
05:16
21 by 34, and so on.
128
304773
2394
21 x 34, dan seterusnya.
05:19
Now checksemak this out.
129
307167
1409
Sekarang tengok ni.
05:20
If you dividemembahagi 13 by eightlapan,
130
308576
2193
Jika anda bahagi 13 dengan 8,
05:22
you get 1.625.
131
310769
2043
anda dapat 1.625. Bahagikan nombor
05:24
And if you dividemembahagi the largerlebih besar numbernombor
by the smallerlebih kecil numbernombor,
132
312812
3427
yang lebih besar dengan yang sebelumnya
05:28
then these ratiosnisbah get closerlebih dekat and closerlebih dekat
133
316239
2873
nisbahnya akan semakin hampir
05:31
to about 1.618,
134
319112
2653
dengan kira-kira 1.618,
05:33
knowndiketahui to manyramai people as the GoldenEmas RatioNisbah,
135
321765
3301
juga dikenali sebagai Nisbah Keemasan,
05:37
a numbernombor whichyang mana has fascinatedterpesona mathematiciansahli matematik,
136
325066
2596
nombor yang mempesonakan ahli matematik,
05:39
scientistssaintis and artistsartis for centuriesberabad-abad lamanya.
137
327662
3246
saintis dan seniman sejak dulu.
05:42
Now, I showtunjukkan all this to you because,
138
330908
2231
Saya bentangkan semua ini kerana,
05:45
like so much of mathematicsmatematik,
139
333139
2025
seperti kebanyakan matematik,
05:47
there's a beautifulcantik sidesebelah to it
140
335164
1967
ia mempunyai aspek yang menakjubkan
05:49
that I fearketakutan does not get enoughcukup attentionperhatian
141
337131
2015
yang sayangnya tak mendapat perhatian
05:51
in our schoolssekolah.
142
339146
1567
di sekolah-sekolah kita.
05:52
We spendbelanja lots of time learningpembelajaran about calculationpengiraan,
143
340713
2833
Banyak masa dihabiskan untuk belajar mengira,
05:55
but let's not forgetlupa about applicationpermohonan,
144
343546
2756
tetapi jangan lupa tentang aplikasinya
05:58
includingtermasuk, perhapsmungkin, the mostpaling banyak
importantpenting applicationpermohonan of all,
145
346302
3454
termasuk aplikasi yang paling penting,
06:01
learningpembelajaran how to think.
146
349756
2076
belajar cara berfikir.
06:03
If I could summarizemeringkaskan this in one sentencehukuman,
147
351832
1957
Saya simpulkan dalam satu ayat:
06:05
it would be this:
148
353789
1461
Saya simpulkan dalam satu ayat:
06:07
MathematicsMatematik is not just solvingmenyelesaikan for x,
149
355250
3360
Matematik bukan hanya untuk mencari x,
06:10
it's alsojuga figuringmemikirkan out why.
150
358610
2925
tapi juga untuk mengetahui kenapa (why).
06:13
Thank you very much.
151
361535
1815
Terima kasih.
06:15
(ApplauseTepukan)
152
363350
4407
(Tepukan)
Translated by Ros Rosli
Reviewed by PF Ng

▲Back to top

ABOUT THE SPEAKER
Arthur Benjamin - Mathemagician
Using daring displays of algorithmic trickery, lightning calculator and number wizard Arthur Benjamin mesmerizes audiences with mathematical mystery and beauty.

Why you should listen

Arthur Benjamin makes numbers dance. In his day job, he's a professor of math at Harvey Mudd College; in his other day job, he's a "Mathemagician," taking the stage in his tuxedo to perform high-speed mental calculations, memorizations and other astounding math stunts. It's part of his drive to teach math and mental agility in interesting ways, following in the footsteps of such heroes as Martin Gardner.

Benjamin is the co-author, with Michael Shermer, of Secrets of Mental Math (which shares his secrets for rapid mental calculation), as well as the co-author of the MAA award-winning Proofs That Really Count: The Art of Combinatorial Proof. For a glimpse of his broad approach to math, see the list of research talks on his website, which seesaws between high-level math (such as his "Vandermonde's Determinant and Fibonacci SAWs," presented at MIT in 2004) and engaging math talks for the rest of us ("An Amazing Mathematical Card Trick").

More profile about the speaker
Arthur Benjamin | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee