ABOUT THE SPEAKER
Arthur Benjamin - Mathemagician
Using daring displays of algorithmic trickery, lightning calculator and number wizard Arthur Benjamin mesmerizes audiences with mathematical mystery and beauty.

Why you should listen

Arthur Benjamin makes numbers dance. In his day job, he's a professor of math at Harvey Mudd College; in his other day job, he's a "Mathemagician," taking the stage in his tuxedo to perform high-speed mental calculations, memorizations and other astounding math stunts. It's part of his drive to teach math and mental agility in interesting ways, following in the footsteps of such heroes as Martin Gardner.

Benjamin is the co-author, with Michael Shermer, of Secrets of Mental Math (which shares his secrets for rapid mental calculation), as well as the co-author of the MAA award-winning Proofs That Really Count: The Art of Combinatorial Proof. For a glimpse of his broad approach to math, see the list of research talks on his website, which seesaws between high-level math (such as his "Vandermonde's Determinant and Fibonacci SAWs," presented at MIT in 2004) and engaging math talks for the rest of us ("An Amazing Mathematical Card Trick").

More profile about the speaker
Arthur Benjamin | Speaker | TED.com
TEDGlobal 2013

Arthur Benjamin: The magic of Fibonacci numbers

Čarolija Fibonaccijevih brojeva

Filmed:
7,057,274 views

Matematika je logična, funkcionalna i jednostavno... impresivna. Matemagičar Arthur Benjamin istražuje skrivena svojstva tog tajanstvenog i čudesnog niza brojeva - Fibonaccijevog niza. (I podsjeća nas koliko i matematika može biti nadahnjujuća!)
- Mathemagician
Using daring displays of algorithmic trickery, lightning calculator and number wizard Arthur Benjamin mesmerizes audiences with mathematical mystery and beauty. Full bio

Double-click the English transcript below to play the video.

00:12
So why do we learnnaučiti mathematicsmatematika?
0
613
3039
Zašto mi, zapravo, učimo matematiku?
00:15
EssentiallyU suštini, for threetri reasonsrazlozi:
1
3652
2548
Tri su bitna razloga:
00:18
calculationračunanje,
2
6200
1628
računanje,
00:19
applicationprimjena,
3
7828
1900
primjena,
00:21
and last, and unfortunatelynažalost leastnajmanje
4
9728
2687
i posljednje, a nažalost i najmanje važno
00:24
in termsUvjeti of the time we give it,
5
12415
2105
u smislu vremena
koje joj posvećujemo,
00:26
inspirationinspiracija.
6
14520
1922
nadahnuće.
00:28
MathematicsMatematika is the scienceznanost of patternsobrasci,
7
16442
2272
Matematika je znanost o obrascima,
00:30
and we studystudija it to learnnaučiti how to think logicallylogički,
8
18714
3358
i proučavamo je kako bismo
naučili misliti logički,
00:34
criticallykritički and creativelykreativno,
9
22072
2527
kritički i stvaralački,
00:36
but too much of the mathematicsmatematika
that we learnnaučiti in schoolškola
10
24599
2926
ali suviše matematike
koju u školi učimo
00:39
is not effectivelyučinkovito motivatedmotivirani,
11
27525
2319
nije pravilno motivirana,
00:41
and when our studentsstudenti askpitati,
12
29844
1425
i kad nas naši učenici pitaju,
00:43
"Why are we learningučenje this?"
13
31269
1675
"Zašto ovo učimo?"
00:44
then they oftenčesto hearčuti that they'lloni će need it
14
32944
1961
često čuju da će im to trebati
00:46
in an upcomingnadolazeće mathmatematika classklasa or on a futurebudućnost testtest.
15
34905
3265
na sljedećem satu matematike,
ili u nekom testu sljedećeg mjeseca.
00:50
But wouldn'tne bi it be great
16
38170
1802
Ali, ne bi li bilo sjajno
00:51
if everysvaki oncejednom in a while we did mathematicsmatematika
17
39972
2518
kad bismo se s vremena
na vrijeme matematikom bavili
00:54
simplyjednostavno because it was funzabava or beautifullijep
18
42490
2949
jednostavno zato što je ona
zabavna, prelijepa
00:57
or because it exciteduzbuđen the mindum?
19
45439
2090
ili intelektualno uzbudljiva?
00:59
Now, I know manymnogi people have not
20
47529
1722
Znam da mnogi ljudi nisu nikad imali
01:01
had the opportunityprilika to see how this can happendogoditi se,
21
49251
2319
prigodu vidjeti kako bi to izgledalo,
01:03
so let me give you a quickbrz exampleprimjer
22
51570
1829
pa mi dopustite da vam dam
jednostavan primjer,
01:05
with my favoriteljubimac collectionkolekcija of numbersbrojevi,
23
53399
2341
primjer mojeg omiljenog skupa brojeva,
01:07
the FibonacciFibonacci numbersbrojevi. (ApplausePljesak)
24
55740
2728
Fibonaccijevih brojeva.
(Pljesak)
01:10
Yeah! I alreadyveć have FibonacciFibonacci fansfanovi here.
25
58468
2052
Odlično! I ovdje ima
ljubitelja Fibonaccijeviih brojeva.
01:12
That's great.
26
60520
1316
To je odlično.
01:13
Now these numbersbrojevi can be appreciatedpoštovati
27
61836
2116
Vrijednost tih brojeva
moguće je cijeniti
01:15
in manymnogi differentdrugačiji waysnačine.
28
63952
1878
na mnogo različitih načina.
01:17
From the standpointstanovište of calculationračunanje,
29
65830
2709
Promotrimo li ih iz kuta računanja,
01:20
they're as easylako to understandrazumjeti
30
68539
1677
lako ih je razumjeti kao i
01:22
as one plusplus one, whichkoji is two.
31
70216
2554
kao jedan plus jedan, što je dva..
01:24
Then one plusplus two is threetri,
32
72770
2003
Potom, jedan plus dva je tri,
01:26
two plusplus threetri is fivepet, threetri plusplus fivepet is eightosam,
33
74773
3014
dva plus tri je pet, tri plus pet je osam,
01:29
and so on.
34
77787
1525
i tako dalje.
01:31
IndeedDoista, the personosoba we call FibonacciFibonacci
35
79312
2177
Doista, osoba koju nazivamo Fibonacci
01:33
was actuallyzapravo namedpod nazivom LeonardoLeonardo of PisaPisa,
36
81489
3180
zvao se, zapravo, Leonardo od Pise,
01:36
and these numbersbrojevi appearpojaviti in his bookrezervirati "LiberLiber AbaciAbaci,"
37
84669
3053
a ovi se brojevi pojavljuju u njegovoj knjizi "Liber Abaci",
01:39
whichkoji taughtučio the WesternZapadni worldsvijet
38
87722
1650
iz koje je Zapadni svijet naučio
01:41
the methodsmetode of arithmeticaritmetika that we use todaydanas.
39
89372
2827
aritmetičke metode koje danas koristimo.
01:44
In termsUvjeti of applicationsaplikacije,
40
92199
1721
Što se primjene tiče,
01:45
FibonacciFibonacci numbersbrojevi appearpojaviti in naturepriroda
41
93920
2183
Fibonaccijevi brojevi se u prirodi pojavljuju
01:48
surprisinglyiznenađujuče oftenčesto.
42
96103
1857
iznenađujuće često.
01:49
The numberbroj of petalslatice on a flowercvijet
43
97960
1740
Broj latica na cvijetu
01:51
is typicallytipično a FibonacciFibonacci numberbroj,
44
99700
1862
obično je neki Fibonaccijev broj,
01:53
or the numberbroj of spiralsspirala on a sunflowersuncokret
45
101562
2770
ili broj spirala na suncokretovom cvijetu,
01:56
or a pineappleananas
46
104332
1411
ili na ananasovom plodu
01:57
tendsteži to be a FibonacciFibonacci numberbroj as well.
47
105743
2394
također teži jednom od Fibonaccijevih brojeva.
02:00
In factčinjenica, there are manymnogi more
applicationsaplikacije of FibonacciFibonacci numbersbrojevi,
48
108137
3503
Ustvari, u mnogo drugih slučajeva nalazimo Fibonaccijeve brojeve,
02:03
but what I find mostnajviše inspirationalinspirativna about them
49
111640
2560
ali ono što ja u njima smatram najviše nadahnjujućim
02:06
are the beautifullijep numberbroj patternsobrasci they displayprikaz.
50
114200
2734
jesu prelijepi brojevni obrasci koje prikazuju.
02:08
Let me showpokazati you one of my favoritesFavoriti.
51
116934
2194
Pokazat ću vam jedan od svojih omiljenih.
02:11
SupposePretpostavimo da you like to squarekvadrat numbersbrojevi,
52
119128
2221
Pretpostavimo da volite kvadrirati brojeve,
02:13
and franklyiskreno, who doesn't? (LaughterSmijeh)
53
121349
2675
i, iskreno, tko ne voli? (Smijeh)
02:16
Let's look at the squarestrgovi
54
124040
2240
Pogledajmo kvadrate
02:18
of the first fewnekoliko FibonacciFibonacci numbersbrojevi.
55
126280
1851
prvih nekoliko Fibonaccijevih brojeva.
02:20
So one squaredna kvadrat is one,
56
128131
2030
Dakle, jedan na kvadrat je jedan,
02:22
two squaredna kvadrat is fourčetiri, threetri squaredna kvadrat is ninedevet,
57
130161
2317
dva na kvadrat je četiri, tri na kvadrat je devet,
02:24
fivepet squaredna kvadrat is 25, and so on.
58
132478
3173
pet na kvadrat je dvadeset i pet, i tako dalje.
02:27
Now, it's no surpriseiznenađenje
59
135651
1901
Naravno, nije iznenađujuće
02:29
that when you adddodati consecutiveuzastopnih FibonacciFibonacci numbersbrojevi,
60
137552
2828
kad pribrajanjem uzastopnih Fibonaccijevih brojeva
02:32
you get the nextSljedeći FibonacciFibonacci numberbroj. Right?
61
140380
2032
dobijemo sljedeći Fibonaccijev broj. Zar ne?
02:34
That's how they're createdstvorio.
62
142412
1395
Tako su i stvoreni.
02:35
But you wouldn'tne bi expectočekivati anything specialposeban
63
143807
1773
Međutim, ne biste očekivali ništa osobito
02:37
to happendogoditi se when you adddodati the squarestrgovi togetherzajedno.
64
145580
3076
krenete li zbrajati kvadrate.
02:40
But checkprovjeriti this out.
65
148656
1346
Ali, pogledajte ovo.
02:42
One plusplus one givesdaje us two,
66
150002
2001
Jedan plus jedan daje dva,
02:44
and one plusplus fourčetiri givesdaje us fivepet.
67
152003
2762
a jedan plus četiri daje pet.
02:46
And fourčetiri plusplus ninedevet is 13,
68
154765
2195
A četiri plus devet daju trinaest,
02:48
ninedevet plusplus 25 is 34,
69
156960
3213
a devet plus 25 je 34,
02:52
and yes, the patternuzorak continuesnastavlja.
70
160173
2659
i da, obrazac se nastavlja.
02:54
In factčinjenica, here'sevo anotherjoš one.
71
162832
1621
Zapravo, evo vam još jednog.
02:56
SupposePretpostavimo da you wanted to look at
72
164453
1844
Pretpostavimo da ste poželjeli sagledati
02:58
addingdodajući the squarestrgovi of
the first fewnekoliko FibonacciFibonacci numbersbrojevi.
73
166297
2498
zbrajanje kvadrata prvih nekoliko
Fibonaccijevih brojeva.
03:00
Let's see what we get there.
74
168795
1608
Pogledajmo što ćemo dobiti.
03:02
So one plusplus one plusplus fourčetiri is sixšest.
75
170403
2139
Dakle jedan plus jedan plus četiri je šest.
03:04
AddDodati ninedevet to that, we get 15.
76
172542
3005
Dodamo li tome devet, dobit ćemo 15.
03:07
AddDodati 25, we get 40.
77
175547
2213
Dodajmo 25 i dobivamo 40.
03:09
AddDodati 64, we get 104.
78
177760
2791
Dodajmo 64 i dobivamo 104.
03:12
Now look at those numbersbrojevi.
79
180551
1652
Razmotrimo te brojeve.
03:14
Those are not FibonacciFibonacci numbersbrojevi,
80
182203
2384
To nisu Fiboonaccijevi brojevi,
03:16
but if you look at them closelytijesno,
81
184587
1879
ali promotrite li ih pažljivije,
03:18
you'llvi ćete see the FibonacciFibonacci numbersbrojevi
82
186466
1883
uočit ćete Fibonaccijeve brojeve
03:20
buriedpokopan insideiznutra of them.
83
188349
2178
skrivene u njima.
03:22
Do you see it? I'll showpokazati it to you.
84
190527
2070
Vidite li ih?
Pokazat ću vam.
03:24
SixŠest is two timesputa threetri, 15 is threetri timesputa fivepet,
85
192597
3733
Šest je dva puta tri,
a 15 je tri puta pet,
03:28
40 is fivepet timesputa eightosam,
86
196330
2059
40 je pet puta osam,
03:30
two, threetri, fivepet, eightosam, who do we appreciatecijeniti?
87
198389
2928
dva, tri, pet, osam,
volite me takvog tko sam?
03:33
(LaughterSmijeh)
88
201317
1187
(Smijeh)
03:34
FibonacciFibonacci! Of coursenaravno.
89
202504
2155
Fibonacci!
Naravno.
03:36
Now, as much funzabava as it is to discoverotkriti these patternsobrasci,
90
204659
3783
Koliko god bilo zabavno otkrivati ovakve obrasce,
03:40
it's even more satisfyingzadovoljavajući to understandrazumjeti
91
208442
2482
još je više ispunjavajuće uvidjeti
03:42
why they are truepravi.
92
210924
1958
zašto je tome tako.
03:44
Let's look at that last equationjednadžba.
93
212882
1889
Pogledajmo posljednju jednadžbu.
03:46
Why should the squarestrgovi of one, one,
two, threetri, fivepet and eightosam
94
214771
3868
Zašto bi kvadrati brojeva jedan, jedan, dva, tri, pet i osam
03:50
adddodati up to eightosam timesputa 13?
95
218639
2545
u zbroju bili jednaki umnošku osam i 13?
03:53
I'll showpokazati you by drawingcrtanje a simplejednostavan pictureslika.
96
221184
2961
Objasnit ću vam ovim
jednostavnim prikazom.
03:56
We'llMi ćemo startpočetak with a one-by-onejedan po jedan squarekvadrat
97
224145
2687
Započnimo s kvadratom
dimenzija jedan puta jedan
03:58
and nextSljedeći to that put anotherjoš one-by-onejedan po jedan squarekvadrat.
98
226832
4165
i do njega stavimo još jedan
kvadrat dimenzija jedan puta jedan.
04:02
TogetherZajedno, they formoblik a one-by-twojedan od dva rectanglepravokutnik.
99
230997
3408
Zajedno, oni čine
pravokutnik dimenzija jedan puta dva.
04:06
BeneathIspod that, I'll put a two-by-twopo dvije squarekvadrat,
100
234405
2549
Ispod njih, nacrtat ću
kvadrat dimenzija dva puta dva,
04:08
and nextSljedeći to that, a three-by-threetri po tri squarekvadrat,
101
236954
2795
a do njih, kvadrat tri puta tri,.
04:11
beneathispod that, a five-by-fivepet za pet squarekvadrat,
102
239749
2001
Ispod njih, kvadrat pet puta pet,
04:13
and then an eight-by-eightosam od osam squarekvadrat,
103
241750
1912
a potom kvadrat osam puta osam,
04:15
creatingstvaranje one giantgigantski rectanglepravokutnik, right?
104
243662
2572
kreirajući tako jedan ogroman pravokutnik, zar ne?
04:18
Now let me askpitati you a simplejednostavan questionpitanje:
105
246234
1916
Postavit ću vam jednostavno pitanje:
04:20
what is the areapodručje of the rectanglepravokutnik?
106
248150
3656
Kolika je površina pravokutnika?
04:23
Well, on the one handruka,
107
251806
1971
S jedne strane,
04:25
it's the sumiznos of the areaspodručja
108
253777
2530
ona je suma površina
04:28
of the squarestrgovi insideiznutra it, right?
109
256307
1866
ucrtanih kvadrata, zar ne?
04:30
Just as we createdstvorio it.
110
258173
1359
Tako je pravokutnik i nastao.
04:31
It's one squaredna kvadrat plusplus one squaredna kvadrat
111
259532
2172
Dakle, jedan na kvadrat plus jedan na kvadrat,
04:33
plusplus two squaredna kvadrat plusplus threetri squaredna kvadrat
112
261704
2233
plus dva na kvadrat, plus tri na kvadrat,
04:35
plusplus fivepet squaredna kvadrat plusplus eightosam squaredna kvadrat. Right?
113
263937
2599
plus pet na kvadrat, plus osam na kvadrat.
04:38
That's the areapodručje.
114
266536
1857
To je površina.
04:40
On the other handruka, because it's a rectanglepravokutnik,
115
268393
2326
S druge strane, budući da se radi o pravokutniku,
04:42
the areapodručje is equaljednak to its heightvisina timesputa its basebaza,
116
270719
3648
površina je jednaka umnošku
njegove visine i njegove baze,
04:46
and the heightvisina is clearlyjasno eightosam,
117
274367
2047
pri čemu je visina očito osam
04:48
and the basebaza is fivepet plusplus eightosam,
118
276414
2903
a baza je pet plus osam,
04:51
whichkoji is the nextSljedeći FibonacciFibonacci numberbroj, 13. Right?
119
279317
3938
što je sljedeći
Fibonaccijev broj, 13.Zar ne?
04:55
So the areapodručje is alsotakođer eightosam timesputa 13.
120
283255
3363
Prema tome, površina je osam puta 13.
04:58
SinceOd we'veimamo correctlyispravno calculatedizračunava se the areapodručje
121
286618
2262
Budući da smo ispravno izračunali površinu
05:00
two differentdrugačiji waysnačine,
122
288880
1687
na dva različita načina,
05:02
they have to be the sameisti numberbroj,
123
290567
2172
to trebaju biti isti brojevi,
05:04
and that's why the squarestrgovi of one,
one, two, threetri, fivepet and eightosam
124
292739
3391
i etto zašto kvadrati brojeva
jedan, jedan, dva, tri, pet i osam
05:08
adddodati up to eightosam timesputa 13.
125
296130
2291
zbrojeni daju osam puta 13.
05:10
Now, if we continuenastaviti this processpostupak,
126
298421
2374
Nastavimo li ovaj postupak,
05:12
we'lldobro generategenerirati rectanglespravokutnika of the formoblik 13 by 21,
127
300795
3978
stvorit ćemo pravokutnike
oblika 13 puta 21,
05:16
21 by 34, and so on.
128
304773
2394
21 puta 34, i tako dalje.
05:19
Now checkprovjeriti this out.
129
307167
1409
A razmotrimo ovo.
05:20
If you dividepodijeliti 13 by eightosam,
130
308576
2193
Podijelimo li 13 sa osam,
05:22
you get 1.625.
131
310769
2043
dobit ćemo 1,625.
05:24
And if you dividepodijeliti the largerveći numberbroj
by the smallermanji numberbroj,
132
312812
3427
I dijelimo li veći broj
s manjim brojem,
05:28
then these ratiosomjeri get closerbliže and closerbliže
133
316239
2873
primijetit ćemo da se
količnici sve više približavaju
05:31
to about 1.618,
134
319112
2653
broju 1,618,
05:33
knownznan to manymnogi people as the GoldenZlatni RatioOmjer,
135
321765
3301
mnogim ljudima znanom
kao Zlatni omjer,
05:37
a numberbroj whichkoji has fascinatedopčinjen mathematiciansmatematičari,
136
325066
2596
broj koji je stoljećima očaravao matematičare,
05:39
scientistsznanstvenici and artistsizvođači for centuriesstoljeća.
137
327662
3246
znanstvenike i umjetnike stoljećima.
05:42
Now, I showpokazati all this to you because,
138
330908
2231
Sve vam ovo pokazujem zato što,
05:45
like so much of mathematicsmatematika,
139
333139
2025
kao toliko toga u matematici,
05:47
there's a beautifullijep sidestrana to it
140
335164
1967
ovo posjeduje osobitu ljepotu kojoj,
05:49
that I fearstrah does not get enoughdovoljno attentionpažnja
141
337131
2015
bojim se, ne poklanjamo dovoljno pozornosti
05:51
in our schoolsškola.
142
339146
1567
u našim školama.
05:52
We spendprovesti lots of time learningučenje about calculationračunanje,
143
340713
2833
Mnogo vremena provodimo učeći o računanju,
05:55
but let's not forgetzaboraviti about applicationprimjena,
144
343546
2756
ali ne zaboravimo na primjenu,
05:58
includinguključujući, perhapsmožda, the mostnajviše
importantvažno applicationprimjena of all,
145
346302
3454
uključujući, možda, i najvažniju
od svih mogućih primjena,
06:01
learningučenje how to think.
146
349756
2076
učiti kako misliti.
06:03
If I could summarizerezimirati this in one sentencekazna,
147
351832
1957
Kad bih ovo mogao sažeti u jednoj rečenici,
06:05
it would be this:
148
353789
1461
bila bi to ova:
06:07
MathematicsMatematika is not just solvingrješavanje for x,
149
355250
3360
Matematika ne služi samo za rješavanje x-a,
06:10
it's alsotakođer figuringfiguring out why.
150
358610
2925
već i razotkrivanje onoga zašto.
06:13
Thank you very much.
151
361535
1815
Hvala vam puno.
06:15
(ApplausePljesak)
152
363350
4407
(Pljesak)
Translated by Mladen Barešić
Reviewed by Senzos Osijek

▲Back to top

ABOUT THE SPEAKER
Arthur Benjamin - Mathemagician
Using daring displays of algorithmic trickery, lightning calculator and number wizard Arthur Benjamin mesmerizes audiences with mathematical mystery and beauty.

Why you should listen

Arthur Benjamin makes numbers dance. In his day job, he's a professor of math at Harvey Mudd College; in his other day job, he's a "Mathemagician," taking the stage in his tuxedo to perform high-speed mental calculations, memorizations and other astounding math stunts. It's part of his drive to teach math and mental agility in interesting ways, following in the footsteps of such heroes as Martin Gardner.

Benjamin is the co-author, with Michael Shermer, of Secrets of Mental Math (which shares his secrets for rapid mental calculation), as well as the co-author of the MAA award-winning Proofs That Really Count: The Art of Combinatorial Proof. For a glimpse of his broad approach to math, see the list of research talks on his website, which seesaws between high-level math (such as his "Vandermonde's Determinant and Fibonacci SAWs," presented at MIT in 2004) and engaging math talks for the rest of us ("An Amazing Mathematical Card Trick").

More profile about the speaker
Arthur Benjamin | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee