ABOUT THE SPEAKER
Hans Rosling - Global health expert; data visionary
In Hans Rosling’s hands, data sings. Global trends in health and economics come to vivid life. And the big picture of global development—with some surprisingly good news—snaps into sharp focus.

Why you should listen

Even the most worldly and well-traveled among us have had their perspectives shifted by Hans Rosling. A professor of global health at Sweden's Karolinska Institute, his work focused on dispelling common myths about the so-called developing world, which (as he pointed out) is no longer worlds away from the West. In fact, most of the Third World is on the same trajectory toward health and prosperity, and many countries are moving twice as fast as the west did.

What set Rosling apart wasn't just his apt observations of broad social and economic trends, but the stunning way he presented them. Guaranteed: You've never seen data presented like this. A presentation that tracks global health and poverty trends should be, in a word: boring. But in Rosling's hands, data sings. Trends come to life. And the big picture — usually hazy at best — snaps into sharp focus.

Rosling's presentations were grounded in solid statistics (often drawn from United Nations and World Bank data), illustrated by the visualization software he developed. The animations transform development statistics into moving bubbles and flowing curves that make global trends clear, intuitive and even playful. During his legendary presentations, Rosling took this one step farther, narrating the animations with a sportscaster's flair.

Rosling developed the breakthrough software behind his visualizations through his nonprofit Gapminder, founded with his son and daughter-in-law. The free software — which can be loaded with any data — was purchased by Google in March 2007. (Rosling met the Google founders at TED.)

Rosling began his wide-ranging career as a physician, spending many years in rural Africa tracking a rare paralytic disease (which he named konzo) and discovering its cause: hunger and badly processed cassava. He co-founded Médecins sans Frontièrs (Doctors without Borders) Sweden, wrote a textbook on global health, and as a professor at the Karolinska Institut in Stockholm initiated key international research collaborations. He's also personally argued with many heads of state, including Fidel Castro.

Hans Rosling passed away in February 2017. He is greatly missed.


More profile about the speaker
Hans Rosling | Speaker | TED.com
TED2009

Hans Rosling: Insights on HIV, in stunning data visuals

Hans Rosling sobre o HIV: novos fatos e gráficos espetaculares

Filmed:
1,174,291 views

Hans Rosling divulga novos gráficos que desvendam os fatores de risco de uma das doenças mais mortais (e incompreendidas) do mundo: o HIV. Ele argumenta que a solução para acabar com a epidemia é a prevenção das transmissões, não o tratamento com remédios.
- Global health expert; data visionary
In Hans Rosling’s hands, data sings. Global trends in health and economics come to vivid life. And the big picture of global development—with some surprisingly good news—snaps into sharp focus. Full bio

Double-click the English transcript below to play the video.

00:12
(Applause)
0
0
5000
(Aplausos)
00:18
AIDS was discovered 1981; the virus, 1983.
1
6000
5000
A AIDS foi descoberta em 1981 e o vírus, em 1983.
00:23
These Gapminder bubbles show you
2
11000
2000
Essas bolhas do Gapminder mostram
00:25
how the spread of the virus was in 1983 in the world,
3
13000
4000
a propagação do vírus no mundo em 1983,
00:29
or how we estimate that it was.
4
17000
2000
ou como estimamos que fosse.
00:31
What we are showing here is --
5
19000
2000
Nesse gráfico vemos...
00:33
on this axis here, I'm showing percent of infected adults.
6
21000
7000
Esse eixo mostra o percentual de adultos infectados.
00:40
And on this axis, I'm showing dollars per person in income.
7
28000
5000
Esse eixo mostra a renda em dólar por pessoa.
00:45
And the size of these bubbles, the size of the bubbles here,
8
33000
4000
E o tamanho das bolhas
00:49
that shows how many are infected in each country,
9
37000
3000
mostra o número de infectados por país.
00:52
and the color is the continent.
10
40000
2000
A cor é o continente.
00:54
Now, you can see United States, in 1983,
11
42000
2000
Os EUA em 1983
00:56
had a very low percentage infected,
12
44000
3000
tinham um percentual muito baixo de infectados,
00:59
but due to the big population, still a sizable bubble.
13
47000
4000
mas como a população é grande, a bolha é grande.
01:03
There were quite many people infected in the United States.
14
51000
3000
Existiam muitas pessoas infectadas nos EUA.
01:06
And, up there, you see Uganda.
15
54000
2000
Lá em cima está Uganda.
01:08
They had almost five percent infected,
16
56000
3000
Eles tinham quase 5% de infectados,
01:11
and quite a big bubble in spite of being a small country, then.
17
59000
3000
e uma bolha grande, apesar de serem um país pequeno.
01:14
And they were probably the most infected country in the world.
18
62000
5000
Era provavelmente o país mais infectado no mundo.
01:19
Now, what has happened?
19
67000
2000
O que aconteceu?
01:21
Now you have understood the graph
20
69000
2000
Agora que o gráfico está entendido,
01:23
and now, in the next 60 seconds,
21
71000
3000
nos próximos 60s,
01:26
we will play the HIV epidemic in the world.
22
74000
3000
vamos ver a epidemia mundial do HIV.
01:29
But first, I have a new invention here.
23
77000
3000
Mas antes, eu tenho uma nova invenção.
01:34
(Laughter)
24
82000
3000
(Risos)
01:39
I have solidified the beam of the laser pointer.
25
87000
4000
Eu solidifiquei o raio da caneta laser.
01:43
(Laughter)
26
91000
3000
(Risos)
01:46
(Applause)
27
94000
3000
(Aplausos)
01:52
So, ready, steady, go!
28
100000
4000
Preparar, apontar, vai!
01:56
First, we have the fast rise in Uganda and Zimbabwe.
29
104000
4000
Primeiro, o crescimento acelerado em Uganda e Zimbábue.
02:00
They went upwards like this.
30
108000
2000
Eles subiram assim.
02:02
In Asia, the first country to be heavily infected was Thailand --
31
110000
4000
Na Ásia, o primeiro país fortemente infectado foi a Tailândia.
02:06
they reached one to two percent.
32
114000
2000
Atingiram de 1 a 2%.
02:08
Then, Uganda started to turn back,
33
116000
2000
Uganda começou a se recuperar,
02:10
whereas Zimbabwe skyrocketed,
34
118000
2000
enquanto o Zimbábue disparou.
02:12
and some years later South Africa had a terrible rise of HIV frequency.
35
120000
4000
Anos depois, a África do Sul teve um crescimento em HIV.
02:16
Look, India got many infected,
36
124000
2000
A Índia estava com muitos infectados,
02:18
but had a low level.
37
126000
2000
mas tinha um nível baixo.
02:20
And almost the same happens here.
38
128000
2000
O mesmo acontece por aqui.
02:22
See, Uganda coming down, Zimbabwe coming down,
39
130000
3000
Uganda descendo, Zimbábue descendo,
02:25
Russia went to one percent.
40
133000
2000
Rússia foi a 1%.
02:27
In the last two to three years,
41
135000
3000
Nos últimos dois a três anos,
02:30
we have reached a steady state of HIV epidemic in the world.
42
138000
4000
a epidemia mundial de HIV se estabilizou.
02:34
25 years it took.
43
142000
3000
Levou 25 anos.
02:37
But, steady state doesn't mean that things are getting better,
44
145000
3000
Mas estabilização não quer dizer melhoria,
02:40
it's just that they have stopped getting worse.
45
148000
3000
só quer dizer que as coisas pararam de piorar.
02:43
And it has -- the steady state is, more or less,
46
151000
4000
Estabilizou em mais ou menos
02:47
one percent of the adult world population is HIV-infected.
47
155000
4000
1% da população mundial adulta.
02:51
It means 30 to 40 million people,
48
159000
3000
São 30 ou 40 milhões de pessoas,
02:54
the whole of California -- every person,
49
162000
2000
toda Califórnia, cada habitante.
02:56
that's more or less what we have today in the world.
50
164000
2000
Esse é o panorama aproximado do mundo hoje.
02:58
Now, let me make a fast replay of Botswana.
51
166000
5000
Eu quero rodar um replay rápido de Botswana.
03:03
Botswana -- upper middle-income country in southern Africa,
52
171000
4000
Botswana, país de classe média alta no sul da África,
03:07
democratic government, good economy,
53
175000
3000
governo democrático, boa economia,
03:10
and this is what happened there.
54
178000
2000
e foi isso o que aconteceu.
03:12
They started low, they skyrocketed,
55
180000
2000
Começou lá embaixo, disparou,
03:14
they peaked up there in 2003,
56
182000
3000
o pico foi em 2003,
03:17
and now they are down.
57
185000
2000
e agora está caindo.
03:19
But they are falling only slowly,
58
187000
2000
Mas está caindo devagar,
03:21
because in Botswana, with good economy and governance,
59
189000
2000
porque em Botswana, com economia e governo prósperos,
03:23
they can manage to treat people.
60
191000
3000
é possível tratar as pessoas.
03:26
And if people who are infected are treated, they don't die of AIDS.
61
194000
3000
Se os infectados forem tratados, eles não morrem de AIDS.
03:29
These percentages won't come down
62
197000
3000
As porcentagens não caem porque
03:32
because people can survive 10 to 20 years.
63
200000
2000
é possível sobreviver de 10 a 20 anos com AIDS.
03:34
So there's some problem with these metrics now.
64
202000
3000
Então existem problemas com as estatísticas.
03:37
But the poorer countries in Africa, the low-income countries down here,
65
205000
4000
Mas nos países pobres da África, de baixa-renda,
03:41
there the rates fall faster, of the percentage infected,
66
209000
6000
a porcentagem de infectados cai mais rápido
03:47
because people still die.
67
215000
2000
porque essas pessoas estão morrendo.
03:49
In spite of PEPFAR, the generous PEPFAR,
68
217000
3000
Apesar do Plano de Emergência para a AIDS,
03:52
all people are not reached by treatment,
69
220000
3000
nem todo mundo recebe tratamento,
03:55
and of those who are reached by treatment in the poor countries,
70
223000
2000
e dos que recebem tratamento nos países pobres,
03:57
only 60 percent are left on treatment after two years.
71
225000
3000
só 60% continuam o tratamento após 2 anos.
04:00
It's not realistic with lifelong treatment
72
228000
4000
O tratamento vitalício não é uma realidade
04:04
for everyone in the poorest countries.
73
232000
2000
para todos nos países pobres.
04:06
But it's very good that what is done is being done.
74
234000
3000
Ainda assim, a iniciativa é boa.
04:09
But focus now is back on prevention.
75
237000
4000
Agora vamos nos focar na prevenção.
04:13
It is only by stopping the transmission
76
241000
3000
É somente parando a transmissão
04:16
that the world will be able to deal with it.
77
244000
3000
que podemos ser eficazes.
04:19
Drugs is too costly -- had we had the vaccine,
78
247000
2000
Remédios são caros. Se existisse
04:21
or when we will get the vaccine, that's something more effective --
79
249000
3000
uma vacina, quem sabe as coisas seriam mais efetivas.
04:24
but the drugs are very costly for the poor.
80
252000
2000
Remédios são caros demais para os pobres.
04:26
Not the drug in itself, but the treatment
81
254000
2000
Não o remédio, mas o tratamento
04:28
and the care which is needed around it.
82
256000
2000
e cuidados necessários.
04:32
So, when we look at the pattern,
83
260000
3000
Quando olhamos esse modelo,
04:35
one thing comes out very clearly:
84
263000
2000
uma coisa chama atenção:
04:37
you see the blue bubbles
85
265000
2000
vemos as bolhas azuis
04:39
and people say HIV is very high in Africa.
86
267000
2000
e dizemos que o HIV é elevado na África.
04:41
I would say, HIV is very different in Africa.
87
269000
3000
Eu diria que o HIV é diferente na África.
04:44
You'll find the highest HIV rate in the world
88
272000
4000
Os maiores índices de HIV do mundo
04:48
in African countries,
89
276000
2000
estão na África,
04:50
and yet you'll find Senegal, down here --
90
278000
2000
e ainda assim Senegal tem
04:52
the same rate as United States.
91
280000
2000
a mesma taxa que os EUA.
04:54
And you'll find Madagascar,
92
282000
2000
Temos Madagascar,
04:56
and you'll find a lot of African countries
93
284000
2000
e vários outros países africanos,
04:58
about as low as the rest of the world.
94
286000
3000
com índices tão baixos como os do resto do mundo.
05:01
It's this terrible simplification that there's one Africa
95
289000
4000
É uma péssima simplificação pensar em uma única África,
05:05
and things go on in one way in Africa.
96
293000
2000
que tudo é igual na África.
05:07
We have to stop that.
97
295000
2000
Temos que parar com isso.
05:09
It's not respectful, and it's not very clever
98
297000
3000
Não é respeitoso e inteligente
05:12
to think that way.
99
300000
2000
pensar assim.
05:14
(Applause)
100
302000
4000
(Aplausos)
05:18
I had the fortune to live and work for a time in the United States.
101
306000
3000
Tive a felicidade de trabalhar e morar nos EUA.
05:21
I found out that Salt Lake City and San Francisco were different.
102
309000
4000
Descobri que Salt Lake City e São Francisco são diferentes.
05:25
(Laughter)
103
313000
2000
(Risos)
05:27
And so it is in Africa -- it's a lot of difference.
104
315000
3000
Na África é a mesma coisa. Tem muitas diferenças.
05:30
So, why is it so high? Is it war?
105
318000
2000
Então, por que é tão elevado? É a guerra?
05:32
No, it's not. Look here.
106
320000
2000
Não é. Vejam aqui.
05:34
War-torn Congo is down there -- two, three, four percent.
107
322000
3000
A guerra destruiu o Congo: 2, 3, 4%.
05:37
And this is peaceful Zambia, neighboring country -- 15 percent.
108
325000
4000
A pacífica Zâmbia, país vizinho: 15%.
05:41
And there's good studies of the refugees coming out of Congo --
109
329000
3000
Existem bons estudos com refugiados congoleses.
05:44
they have two, three percent infected,
110
332000
2000
Eles tem 2 a 3% de infectados
05:46
and peaceful Zambia -- much higher.
111
334000
2000
e em Zâmbia o número é bem maior.
05:48
There are now studies clearly showing
112
336000
2000
Novos estudos mostram claramente
05:50
that the wars are terrible, that rapes are terrible,
113
338000
3000
que a guerra é horrível, estupros são horríveis.
05:53
but this is not the driving force for the high levels in Africa.
114
341000
3000
Mas essa não é a causa dos altos índices africanos.
05:56
So, is it poverty?
115
344000
2000
Seria a pobreza?
05:58
Well if you look at the macro level,
116
346000
2000
Se olharmos o conjunto,
06:00
it seems more money, more HIV.
117
348000
2000
mais dinheiro é igual a mais HIV.
06:02
But that's very simplistic,
118
350000
3000
Mas essa é uma simplificação,
06:05
so let's go down and look at Tanzania.
119
353000
2000
vamos olhar a Tanzânia.
06:07
I will split Tanzania in five income groups,
120
355000
4000
Vou dividir a Tanzânia em 5 grupos,
06:11
from the highest income to the lowest income,
121
359000
2000
da maior para a menor renda.
06:13
and here we go.
122
361000
2000
Vejamos.
06:15
The ones with the highest income, the better off -- I wouldn't say rich --
123
363000
3000
Os grupos de renda maior, não diria ricos,
06:18
they have higher HIV.
124
366000
2000
têm mais HIV.
06:20
The difference goes from 11 percent down to four percent,
125
368000
3000
A diferença vai de 11% até 4%,
06:23
and it is even bigger among women.
126
371000
2000
e é ainda maior entre mulheres.
06:25
There's a lot of things that we thought, that now, good research,
127
373000
4000
Achávamos muitas coisas que pesquisas recentes
06:29
done by African institutions and researchers
128
377000
3000
feitas por institutos africanos
06:32
together with the international researchers, show that that's not the case.
129
380000
3000
e internacionais mostram estar erradas.
06:35
So, this is the difference within Tanzania.
130
383000
2000
Essas são as diferenças na Tanzânia.
06:37
And, I can't avoid showing Kenya.
131
385000
2000
Não posso deixar de mostrar o Quênia.
06:39
Look here at Kenya.
132
387000
2000
Olhem o Quênia.
06:41
I've split Kenya in its provinces.
133
389000
2000
Dividi o Quênia nas suas províncias.
06:43
Here it goes.
134
391000
2000
Vamos lá.
06:45
See the difference within one African country --
135
393000
3000
A diferença dentro de um país africano
06:48
it goes from very low level to very high level,
136
396000
3000
vai do muito alto ao muito baixo,
06:51
and most of the provinces in Kenya is quite modest.
137
399000
3000
e a maioria das províncias quenianas são modestas.
06:54
So, what is it then?
138
402000
2000
Então, o que acontece?
06:56
Why do we see this extremely high levels in some countries?
139
404000
4000
Por que vemos níveis elevados em alguns países?
07:00
Well, it is more common with multiple partners,
140
408000
3000
Lá é mais comum ter múltiplos parceiros,
07:03
there is less condom use,
141
411000
3000
o uso de camisinha é menor,
07:06
and there is age-disparate sex --
142
414000
3000
e existe diferença de idade,
07:09
that is, older men tend to have sex with younger women.
143
417000
3000
ou seja, homens mais velhos com mulheres jovens.
07:12
We see higher rates in younger women than younger men
144
420000
3000
Mulheres jovens são mais infectadas do que homens jovens
07:15
in many of these highly affected countries.
145
423000
2000
nos países de maior índice.
07:17
But where are they situated?
146
425000
2000
Mas onde eles estão localizados?
07:19
I will swap the bubbles to a map.
147
427000
2000
Vou trocar as bolhas por um mapa.
07:21
Look, the highly infected are four percent of all population
148
429000
4000
Os países mais infectados têm 4% da população mundial
07:25
and they hold 50 percent of the HIV-infected.
149
433000
3000
e 50% das pessoas que são HIV positivo.
07:28
HIV exists all over the world.
150
436000
3000
O HIV existe em todo mundo.
07:31
Look, you have bubbles all over the world here.
151
439000
2000
As bolhas estão em toda parte.
07:33
Brazil has many HIV-infected.
152
441000
3000
O Brasil tem muitos HIV positivo.
07:36
Arab countries not so much, but Iran is quite high.
153
444000
3000
Países árabes nem tanto, mas o Irã tem bastante.
07:39
They have heroin addiction and also prostitution in Iran.
154
447000
4000
O vício de heroína e a prostituição são altos no Irã.
07:43
India has many because they are many.
155
451000
2000
A Índia tem muitos porque eles são muitos.
07:45
Southeast Asia, and so on.
156
453000
2000
Sudeste asiático e assim por diante.
07:47
But, there is one part of Africa --
157
455000
2000
Existe uma parte da África...
07:49
and the difficult thing is, at the same time,
158
457000
2000
O difícil é não fazer
07:51
not to make a uniform statement about Africa,
159
459000
4000
uma afirmação generalizada sobre a África,
07:55
not to come to simple ideas of why it is like this, on one hand.
160
463000
4000
não simplificar as idéias.
07:59
On the other hand, try to say that this is not the case,
161
467000
3000
Por outro lado, admitir que o problema existe,
08:02
because there is a scientific consensus about this pattern now.
162
470000
4000
porque há um consenso científico sobre esse padrão.
08:06
UNAIDS have done good data available, finally,
163
474000
3000
A UNAIDS enfim disponibilizou estatísticas
08:09
about the spread of HIV.
164
477000
3000
sobre a propagação do HIV.
08:12
It could be concurrency.
165
480000
3000
Pode ser promiscuidade.
08:15
It could be some virus types.
166
483000
3000
Podem ser os tipos de vírus.
08:18
It could be that there is other things
167
486000
4000
Podem ser outras coisas
08:22
which makes transmission occur in a higher frequency.
168
490000
3000
que aumentam a frequência de transmissão.
08:25
After all, if you are completely healthy and you have heterosexual sex,
169
493000
3000
Para uma pessoa sadia que pratica sexo heterossexual
08:28
the risk of infection in one intercourse is one in 1,000.
170
496000
5000
a chance de infecção é de 1 em 1000.
08:33
Don't jump to conclusions now on how to
171
501000
2000
Não tirem conclusões precipitadas:
08:35
behave tonight and so on.
172
503000
2000
se comportem de noite.
08:37
(Laughter)
173
505000
2000
(Risos)
08:39
But -- and if you are in an unfavorable situation,
174
507000
3000
Numa situação adversa, combinada a
08:42
more sexually transmitted diseases, it can be one in 100.
175
510000
3000
outras doenças sexualmente transmissíveis, chega a ser 1 em 100.
08:45
But what we think is that it could be concurrency.
176
513000
3000
Pode ser a promiscuidade.
08:48
And what is concurrency?
177
516000
2000
O que é promiscuidade?
08:50
In Sweden, we have no concurrency.
178
518000
2000
Na Suécia, não existe promiscuidade.
08:52
We have serial monogamy.
179
520000
2000
Existe monogamia em série.
08:54
Vodka, New Year's Eve -- new partner for the spring.
180
522000
2000
Vodka, Ano Novo, parceiro novo para a primavera.
08:56
Vodka, Midsummer's Eve -- new partner for the fall.
181
524000
2000
Vodka, Festa Junina, parceiro novo para o outono.
08:58
Vodka -- and it goes on like this, you know?
182
526000
2000
Vodka... E a coisa segue.
09:00
And you collect a big number of exes.
183
528000
3000
Temos uma coleção de "ex".
09:03
And we have a terrible chlamydia epidemic --
184
531000
2000
E uma grande epidemia de clamídia.
09:05
terrible chlamydia epidemic which sticks around for many years.
185
533000
4000
Epidemia que permanece por muitos anos.
09:09
HIV has a peak three to six weeks after infection
186
537000
3000
O HIV tem um pico de 3 a 6 semanas após o contágio
09:12
and therefore, having more than one partner in the same month
187
540000
3000
e portanto, ter mais de um parceiro no mesmo mês,
09:15
is much more dangerous for HIV than others.
188
543000
3000
torna a transmissão do HIV mais perigosa do que outras doenças.
09:18
Probably, it's a combination of this.
189
546000
2000
Provavelmente há uma combinação de fatores.
09:20
And what makes me so happy is that we are moving now
190
548000
3000
Estou feliz porque estamos nos movendo
09:23
towards fact when we look at this.
191
551000
2000
em direção a realidade.
09:25
You can get this chart, free.
192
553000
2000
Esse gráfico está disponível de graça.
09:27
We have uploaded UNAIDS data on the Gapminder site.
193
555000
3000
Os dados da UNAIDS estão em Gapminder.org.
09:30
And we hope that when we act on global problems in the future
194
558000
4000
E eu espero que quando formos atacar problemas no futuro
09:34
we will not only have the heart,
195
562000
3000
não tenhamos só o ânimo,
09:37
we will not only have the money,
196
565000
2000
e só o dinheiro,
09:39
but we will also use the brain.
197
567000
3000
mas também a cabeça.
09:42
Thank you very much.
198
570000
2000
Muito obrigado.
09:44
(Applause)
199
572000
6000
(Aplausos)
Translated by Renan Botelho
Reviewed by Vagner Pagotti

▲Back to top

ABOUT THE SPEAKER
Hans Rosling - Global health expert; data visionary
In Hans Rosling’s hands, data sings. Global trends in health and economics come to vivid life. And the big picture of global development—with some surprisingly good news—snaps into sharp focus.

Why you should listen

Even the most worldly and well-traveled among us have had their perspectives shifted by Hans Rosling. A professor of global health at Sweden's Karolinska Institute, his work focused on dispelling common myths about the so-called developing world, which (as he pointed out) is no longer worlds away from the West. In fact, most of the Third World is on the same trajectory toward health and prosperity, and many countries are moving twice as fast as the west did.

What set Rosling apart wasn't just his apt observations of broad social and economic trends, but the stunning way he presented them. Guaranteed: You've never seen data presented like this. A presentation that tracks global health and poverty trends should be, in a word: boring. But in Rosling's hands, data sings. Trends come to life. And the big picture — usually hazy at best — snaps into sharp focus.

Rosling's presentations were grounded in solid statistics (often drawn from United Nations and World Bank data), illustrated by the visualization software he developed. The animations transform development statistics into moving bubbles and flowing curves that make global trends clear, intuitive and even playful. During his legendary presentations, Rosling took this one step farther, narrating the animations with a sportscaster's flair.

Rosling developed the breakthrough software behind his visualizations through his nonprofit Gapminder, founded with his son and daughter-in-law. The free software — which can be loaded with any data — was purchased by Google in March 2007. (Rosling met the Google founders at TED.)

Rosling began his wide-ranging career as a physician, spending many years in rural Africa tracking a rare paralytic disease (which he named konzo) and discovering its cause: hunger and badly processed cassava. He co-founded Médecins sans Frontièrs (Doctors without Borders) Sweden, wrote a textbook on global health, and as a professor at the Karolinska Institut in Stockholm initiated key international research collaborations. He's also personally argued with many heads of state, including Fidel Castro.

Hans Rosling passed away in February 2017. He is greatly missed.


More profile about the speaker
Hans Rosling | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee