ABOUT THE SPEAKER
Hans Rosling - Global health expert; data visionary
In Hans Rosling’s hands, data sings. Global trends in health and economics come to vivid life. And the big picture of global development—with some surprisingly good news—snaps into sharp focus.

Why you should listen

Even the most worldly and well-traveled among us have had their perspectives shifted by Hans Rosling. A professor of global health at Sweden's Karolinska Institute, his work focused on dispelling common myths about the so-called developing world, which (as he pointed out) is no longer worlds away from the West. In fact, most of the Third World is on the same trajectory toward health and prosperity, and many countries are moving twice as fast as the west did.

What set Rosling apart wasn't just his apt observations of broad social and economic trends, but the stunning way he presented them. Guaranteed: You've never seen data presented like this. A presentation that tracks global health and poverty trends should be, in a word: boring. But in Rosling's hands, data sings. Trends come to life. And the big picture — usually hazy at best — snaps into sharp focus.

Rosling's presentations were grounded in solid statistics (often drawn from United Nations and World Bank data), illustrated by the visualization software he developed. The animations transform development statistics into moving bubbles and flowing curves that make global trends clear, intuitive and even playful. During his legendary presentations, Rosling took this one step farther, narrating the animations with a sportscaster's flair.

Rosling developed the breakthrough software behind his visualizations through his nonprofit Gapminder, founded with his son and daughter-in-law. The free software — which can be loaded with any data — was purchased by Google in March 2007. (Rosling met the Google founders at TED.)

Rosling began his wide-ranging career as a physician, spending many years in rural Africa tracking a rare paralytic disease (which he named konzo) and discovering its cause: hunger and badly processed cassava. He co-founded Médecins sans Frontièrs (Doctors without Borders) Sweden, wrote a textbook on global health, and as a professor at the Karolinska Institut in Stockholm initiated key international research collaborations. He's also personally argued with many heads of state, including Fidel Castro.

Hans Rosling passed away in February 2017. He is greatly missed.


More profile about the speaker
Hans Rosling | Speaker | TED.com
TED2009

Hans Rosling: Insights on HIV, in stunning data visuals

Hans Rosling 論HIV:新的事實與驚奇的視覺數據

Filmed:
1,174,291 views

Hans Rosling 使用嶄新視覺效果去剖析世上其中一種最致命(亦最被人誤解)疾病的危險因素:愛滋病。他認為要結束這世紀流行病,關鍵在於預防傳染而非靠藥物治療。
- Global health expert; data visionary
In Hans Rosling’s hands, data sings. Global trends in health and economics come to vivid life. And the big picture of global development—with some surprisingly good news—snaps into sharp focus. Full bio

Double-click the English transcript below to play the video.

00:12
(Applause掌聲)
0
0
5000
(掌聲)
00:18
AIDS艾滋病 was discovered發現 1981; the virus病毒, 1983.
1
6000
5000
愛滋病是在1981年被發現的,而HIV病毒是在1983年
00:23
These GapminderGapminder bubbles泡泡 show顯示 you
2
11000
2000
這張 Gapminder 氣泡圖會顯示
00:25
how the spread傳播 of the virus病毒 was in 1983 in the world世界,
3
13000
4000
於1983年病毒在世界各地擴散的情況
00:29
or how we estimate估計 that it was.
4
17000
2000
或者說是我們對它的估計
00:31
What we are showing展示 here is --
5
19000
2000
今天我們要展示的是
00:33
on this axis here, I'm showing展示 percent百分 of infected感染 adults成年人.
6
21000
7000
這條(Y)軸,是被感染的成年人比例
00:40
And on this axis, I'm showing展示 dollars美元 per person in income收入.
7
28000
5000
而這條(X)軸,是人均收入(美元)
00:45
And the size尺寸 of these bubbles泡泡, the size尺寸 of the bubbles泡泡 here,
8
33000
4000
而這些氣泡的大小
00:49
that shows節目 how many許多 are infected感染 in each country國家,
9
37000
3000
代表每個國家被感染的人數
00:52
and the color顏色 is the continent大陸.
10
40000
2000
而顏色代表不同洲分
00:54
Now, you can see United聯合的 States狀態, in 1983,
11
42000
2000
現在來看看1983年的美國
00:56
had a very low percentage百分比 infected感染,
12
44000
3000
當時的感染率還非常低
00:59
but due應有 to the big population人口, still a sizable可觀 bubble泡沫.
13
47000
4000
但因為人口基數大,這個氣泡還是很大
01:03
There were quite相當 many許多 people infected感染 in the United聯合的 States狀態.
14
51000
3000
也就是說在美國有很多人被感染
01:06
And, up there, you see Uganda烏干達.
15
54000
2000
在上面是烏干達
01:08
They had almost幾乎 five percent百分 infected感染,
16
56000
3000
感染率接近百分之五
01:11
and quite相當 a big bubble泡沫 in spite儘管 of being存在 a small country國家, then.
17
59000
3000
雖然國家不大,但氣泡也不小
01:14
And they were probably大概 the most infected感染 country國家 in the world世界.
18
62000
5000
他們可能是全世界感染率最高的國家
01:19
Now, what has happened發生?
19
67000
2000
為什麼會這樣?
01:21
Now you have understood了解 the graph圖形
20
69000
2000
我想大家現在都能看明白這個圖表了
01:23
and now, in the next下一個 60 seconds,
21
71000
3000
在接下來的60秒裏
01:26
we will play the HIVHIV epidemic疫情 in the world世界.
22
74000
3000
我們會展示愛滋病疫情在世界各地蔓延的過程
01:29
But first, I have a new invention發明 here.
23
77000
3000
但在這之前,我要先拿出我的新發明
01:34
(Laughter笑聲)
24
82000
3000
(笑聲)
01:39
I have solidified凝固 the beam光束 of the laser激光 pointer指針.
25
87000
4000
我把鐳射筆的光線變成固體了
01:43
(Laughter笑聲)
26
91000
3000
(笑聲)
01:46
(Applause掌聲)
27
94000
3000
(掌聲)
01:52
So, ready準備, steady穩定, go!
28
100000
4000
好,準備,坐穩了,開始!
01:56
First, we have the fast快速 rise上升 in Uganda烏干達 and Zimbabwe津巴布韋.
29
104000
4000
最開始是烏干達和辛巴威的感染率飆升
02:00
They went upwards向上 like this.
30
108000
2000
像這樣一直上升
02:02
In Asia亞洲, the first country國家 to be heavily嚴重 infected感染 was Thailand泰國 --
31
110000
4000
在亞洲,第一個受嚴重感染的國家是泰國
02:06
they reached到達 one to two percent百分.
32
114000
2000
感染率達到百分之一至二
02:08
Then, Uganda烏干達 started開始 to turn back,
33
116000
2000
然後烏干達開始回落
02:10
whereas Zimbabwe津巴布韋 skyrocketed暴漲,
34
118000
2000
而辛巴威一飛沖天
02:12
and some years年份 later後來 South Africa非洲 had a terrible可怕 rise上升 of HIVHIV frequency頻率.
35
120000
4000
幾年後南非的HIV感染率急劇上升
02:16
Look, India印度 got many許多 infected感染,
36
124000
2000
看這裏,印度也有很多人被感染
02:18
but had a low level水平.
37
126000
2000
但整體比率還很低
02:20
And almost幾乎 the same相同 happens發生 here.
38
128000
2000
這裏也一樣
02:22
See, Uganda烏干達 coming未來 down, Zimbabwe津巴布韋 coming未來 down,
39
130000
3000
看,烏干達下降了,辛巴威下降了
02:25
Russia俄國 went to one percent百分.
40
133000
2000
俄羅斯上升到百分之一
02:27
In the last two to three years年份,
41
135000
3000
在過去的兩三年裏
02:30
we have reached到達 a steady穩定 state of HIVHIV epidemic疫情 in the world世界.
42
138000
4000
世界HIV疫情進入了穩定期
02:34
25 years年份 it took.
43
142000
3000
這個穩定期需時25年
02:37
But, steady穩定 state doesn't mean that things are getting得到 better,
44
145000
3000
但穩定並不意味著情況開始好轉
02:40
it's just that they have stopped停止 getting得到 worse更差.
45
148000
3000
只是不再惡化而已
02:43
And it has -- the steady穩定 state is, more or less,
46
151000
4000
穩定情況就是說
02:47
one percent百分 of the adult成人 world世界 population人口 is HIV-infected艾滋病病毒感染.
47
155000
4000
世界成年人口的百分之一感染了HIV病毒
02:51
It means手段 30 to 40 million百萬 people,
48
159000
3000
也就是說大約3000萬到4000萬人
02:54
the whole整個 of California加州 -- every一切 person,
49
162000
2000
相當於加利福尼亞州的所有人口
02:56
that's more or less what we have today今天 in the world世界.
50
164000
2000
這就是現在全世界愛滋病患者的大概數量
02:58
Now, let me make a fast快速 replay重播 of Botswana博茨瓦納.
51
166000
5000
現在我們再快速看一下波札那的情況
03:03
Botswana博茨瓦納 -- upper middle-income中等收入 country國家 in southern南部的 Africa非洲,
52
171000
4000
波札那是為於非洲南部中上收入國家
03:07
democratic民主的 government政府, good economy經濟,
53
175000
3000
民主政府,經濟也不俗
03:10
and this is what happened發生 there.
54
178000
2000
來看看這裏的情況
03:12
They started開始 low, they skyrocketed暴漲,
55
180000
2000
他們的感染率一開始很低,然後火箭般竄升
03:14
they peaked見頂 up there in 2003,
56
182000
3000
在2003年達到頂峰
03:17
and now they are down.
57
185000
2000
現在有所下降
03:19
But they are falling落下 only slowly慢慢地,
58
187000
2000
但下降的速度很慢
03:21
because in Botswana博茨瓦納, with good economy經濟 and governance治理,
59
189000
2000
因為波札那的經濟政治環境不錯
03:23
they can manage管理 to treat對待 people.
60
191000
3000
可以治療愛滋病患者
03:26
And if people who are infected感染 are treated治療, they don't die of AIDS艾滋病.
61
194000
3000
感染者只要接受治療就不會輕易死於愛滋病
03:29
These percentages百分比 won't慣於 come down
62
197000
3000
所以這個比例不會下降
03:32
because people can survive生存 10 to 20 years年份.
63
200000
2000
因為病毒帶菌者可以繼續活上10年到20年
03:34
So there's some problem問題 with these metrics指標 now.
64
202000
3000
所以這個計算方法現在有點問題
03:37
But the poorer countries國家 in Africa非洲, the low-income低收入 countries國家 down here,
65
205000
4000
但一些非洲的窮國,像下面的這些低收入國家
03:41
there the rates利率 fall秋季 faster更快, of the percentage百分比 infected感染,
66
209000
6000
感染比例下降得很快
03:47
because people still die.
67
215000
2000
因為感染者在不斷死亡
03:49
In spite儘管 of PEPFARPEPFAR, the generous慷慨 PEPFARPEPFAR,
68
217000
3000
儘管有慷慨的"總統愛滋病緊急防治救援計畫"(PEPFAR)
03:52
all people are not reached到達 by treatment治療,
69
220000
3000
卻不是所有人都能得到治療
03:55
and of those who are reached到達 by treatment治療 in the poor較差的 countries國家,
70
223000
2000
在這些貧窮國家中,即使是受到治療的那些病人
03:57
only 60 percent百分 are left on treatment治療 after two years年份.
71
225000
3000
兩年後也只剩下60%的人還在治療計畫中
04:00
It's not realistic實際 with lifelong終身 treatment治療
72
228000
4000
對窮國中的每一個患者
04:04
for everyone大家 in the poorest最窮 countries國家.
73
232000
2000
進行終身治療是不切實際的
04:06
But it's very good that what is doneDONE is being存在 doneDONE.
74
234000
3000
但畢竟這些工作已經很好
04:09
But focus焦點 now is back on prevention預防.
75
237000
4000
但現在的關注點已經回到了防預工作上
04:13
It is only by stopping停止 the transmission傳輸
76
241000
3000
只有阻止傳播
04:16
that the world世界 will be able能夠 to deal合同 with it.
77
244000
3000
我們的世界才會有機會對抗愛滋病
04:19
Drugs毒品 is too costly昂貴 -- had we had the vaccine疫苗,
78
247000
2000
藥物太貴了 -- 要是有疫苗就好了
04:21
or when we will get the vaccine疫苗, that's something more effective有效 --
79
249000
3000
或者知道什麼時候會有疫苗,這樣會有效得多
04:24
but the drugs毒品 are very costly昂貴 for the poor較差的.
80
252000
2000
但藥物對窮人來說太貴了
04:26
Not the drug藥物 in itself本身, but the treatment治療
81
254000
2000
並不是藥物本身貴,而是整個治療過程
04:28
and the care關心 which哪一個 is needed需要 around it.
82
256000
2000
以及所需的看護很貴
04:32
So, when we look at the pattern模式,
83
260000
3000
所以,我們看看整個圖表
04:35
one thing comes out very clearly明確地:
84
263000
2000
有一件事非常清楚:
04:37
you see the blue藍色 bubbles泡泡
85
265000
2000
你看那些藍色的氣泡
04:39
and people say HIVHIV is very high in Africa非洲.
86
267000
2000
人們會說非洲的HIV比率很高
04:41
I would say, HIVHIV is very different不同 in Africa非洲.
87
269000
3000
我必須說,HIV在非洲也是非常不同的
04:44
You'll你會 find the highest最高 HIVHIV rate in the world世界
88
272000
4000
你們會發現世界上最高的HIV感染率
04:48
in African非洲人 countries國家,
89
276000
2000
是在非洲國家
04:50
and yet然而 you'll你會 find Senegal塞內加爾, down here --
90
278000
2000
但這裏也有塞內加爾,在下面
04:52
the same相同 rate as United聯合的 States狀態.
91
280000
2000
感染率和美國一樣
04:54
And you'll你會 find Madagascar馬達加斯加,
92
282000
2000
也有馬達加斯加
04:56
and you'll你會 find a lot of African非洲人 countries國家
93
284000
2000
而其他很多非洲國家
04:58
about as low as the rest休息 of the world世界.
94
286000
3000
和世界其他地方的感染率一樣低
05:01
It's this terrible可怕 simplification簡單化 that there's one Africa非洲
95
289000
4000
所以認為非洲的所有事情都是一個樣
05:05
and things go on in one way in Africa非洲.
96
293000
2000
將非洲簡單地同一化是很可怕的
05:07
We have to stop that.
97
295000
2000
我們不能再這麼想
05:09
It's not respectful尊敬的, and it's not very clever聰明
98
297000
3000
這麼想很不尊重他們
05:12
to think that way.
99
300000
2000
也很不明智
05:14
(Applause掌聲)
100
302000
4000
(掌聲)
05:18
I had the fortune幸運 to live生活 and work for a time in the United聯合的 States狀態.
101
306000
3000
我有幸在美國生活和工作過一段時間
05:21
I found發現 out that Salt Lake City and San Francisco弗朗西斯科 were different不同.
102
309000
4000
我發現鹽湖城和舊金山就很不一樣
05:25
(Laughter笑聲)
103
313000
2000
(笑聲)
05:27
And so it is in Africa非洲 -- it's a lot of difference區別.
104
315000
3000
非洲也是一樣 -- 各地有很多不同
05:30
So, why is it so high? Is it war戰爭?
105
318000
2000
那,為什麼比率會這麼高呢?是因為戰爭的關係?
05:32
No, it's not. Look here.
106
320000
2000
不是的。看這裏
05:34
War-torn兵連禍結 Congo剛果 is down there -- two, three, four percent百分.
107
322000
3000
飽經戰火的剛果在下面 -- 百分之二、三、四的樣子
05:37
And this is peaceful平靜的 Zambia贊比亞, neighboring鄰接 country國家 -- 15 percent百分.
108
325000
4000
而和平的鄰國赞比亚 -- 百分之十五
05:41
And there's good studies學習 of the refugees難民 coming未來 out of Congo剛果 --
109
329000
3000
有人研究過剛果難民的感染率
05:44
they have two, three percent百分 infected感染,
110
332000
2000
也在百分之二到三之間
05:46
and peaceful平靜的 Zambia贊比亞 -- much higher更高.
111
334000
2000
而和平的赞比亚要高得多
05:48
There are now studies學習 clearly明確地 showing展示
112
336000
2000
現在有研究明確岀指出
05:50
that the wars戰爭 are terrible可怕, that rapes強姦 are terrible可怕,
113
338000
3000
雖然有很多戰爭,很多強暴事件發生
05:53
but this is not the driving主動 force for the high levels水平 in Africa非洲.
114
341000
3000
但這並不是非洲HIV病毒高比率的主要原因
05:56
So, is it poverty貧窮?
115
344000
2000
所以,是因為貧窮嗎?
05:58
Well if you look at the macro level水平,
116
346000
2000
如果我們從宏觀角度看看
06:00
it seems似乎 more money, more HIVHIV.
117
348000
2000
好像錢越多,HIV就越多
06:02
But that's very simplistic簡單化,
118
350000
3000
但這過於簡單化了
06:05
so let's go down and look at Tanzania坦桑尼亞.
119
353000
2000
我們來仔細看看坦桑尼亞的情況
06:07
I will split分裂 Tanzania坦桑尼亞 in five income收入 groups,
120
355000
4000
我把坦桑尼亞人按收入分成五組
06:11
from the highest最高 income收入 to the lowest最低 income收入,
121
359000
2000
從最高收入到最低收入
06:13
and here we go.
122
361000
2000
我們來看看
06:15
The ones那些 with the highest最高 income收入, the better off -- I wouldn't不會 say rich豐富 --
123
363000
3000
收入最高的人,處境較好的人,我不會叫他們富人
06:18
they have higher更高 HIVHIV.
124
366000
2000
他們的HIV感染率更高
06:20
The difference區別 goes from 11 percent百分 down to four percent百分,
125
368000
3000
感染率最高有百分之十一,最低的到百分之四
06:23
and it is even bigger among其中 women婦女.
126
371000
2000
婦女中這個差距更大
06:25
There's a lot of things that we thought, that now, good research研究,
127
373000
4000
許多我們以前的想法,被現在許多由
06:29
doneDONE by African非洲人 institutions機構 and researchers研究人員
128
377000
3000
非洲及國際機構和研究人員所做的研究
06:32
together一起 with the international國際 researchers研究人員, show顯示 that that's not the case案件.
129
380000
3000
證實是錯誤的
06:35
So, this is the difference區別 within Tanzania坦桑尼亞.
130
383000
2000
這是坦桑尼亞的例子
06:37
And, I can't avoid避免 showing展示 Kenya肯尼亞.
131
385000
2000
我必須再舉一下肯亞的例子
06:39
Look here at Kenya肯尼亞.
132
387000
2000
來看看肯亞
06:41
I've split分裂 Kenya肯尼亞 in its provinces.
133
389000
2000
我按省份劃分肯亞
06:43
Here it goes.
134
391000
2000
來看看
06:45
See the difference區別 within one African非洲人 country國家 --
135
393000
3000
在同一個非洲國家裏的差別
06:48
it goes from very low level水平 to very high level水平,
136
396000
3000
從很低的水平到很高的水平
06:51
and most of the provinces in Kenya肯尼亞 is quite相當 modest謙虛.
137
399000
3000
而肯亞大部分的省份感染率並不高
06:54
So, what is it then?
138
402000
2000
那到底是什麼原因呢?
06:56
Why do we see this extremely非常 high levels水平 in some countries國家?
139
404000
4000
為什麼有些國家的感染率那麼高?
07:00
Well, it is more common共同 with multiple partners夥伴,
140
408000
3000
其中因素包括有多個性伴侶,
07:03
there is less condom避孕套 use,
141
411000
3000
或不愛用避孕套
07:06
and there is age-disparate年齡不同 sex性別 --
142
414000
3000
或有年齡差異大的性愛因素
07:09
that is, older舊的 men男人 tend趨向 to have sex性別 with younger更年輕 women婦女.
143
417000
3000
就是大年紀男人喜歡跟年輕女人做愛
07:12
We see higher更高 rates利率 in younger更年輕 women婦女 than younger更年輕 men男人
144
420000
3000
所以我們發現在很多感染率較高的國家裏
07:15
in many許多 of these highly高度 affected受影響 countries國家.
145
423000
2000
年輕女性的感染率要高於年輕男性
07:17
But where are they situated位於?
146
425000
2000
那地理上的分佈又是怎麼樣呢?
07:19
I will swap交換 the bubbles泡泡 to a map地圖.
147
427000
2000
我把氣泡轉移到地圖上
07:21
Look, the highly高度 infected感染 are four percent百分 of all population人口
148
429000
4000
看,感染率高的國家佔世界人口的百分之四
07:25
and they hold保持 50 percent百分 of the HIV-infected艾滋病病毒感染.
149
433000
3000
但卻有全球百分之五十的HIV感染者
07:28
HIVHIV exists存在 all over the world世界.
150
436000
3000
HIV在世界各地都存在
07:31
Look, you have bubbles泡泡 all over the world世界 here.
151
439000
2000
看,氣泡分佈在所有地方
07:33
Brazil巴西 has many許多 HIV-infected艾滋病病毒感染.
152
441000
3000
巴西有很多HIV感染者
07:36
Arab阿拉伯 countries國家 not so much, but Iran伊朗 is quite相當 high.
153
444000
3000
阿拉伯國家不多,但伊朗很高
07:39
They have heroin海洛因 addiction and also prostitution賣淫 in Iran伊朗.
154
447000
4000
伊朗的問題是海洛因和賣淫
07:43
India印度 has many許多 because they are many許多.
155
451000
2000
印度有很多因為它本身人口多
07:45
Southeast東南 Asia亞洲, and so on.
156
453000
2000
以及東南亞等等
07:47
But, there is one part部分 of Africa非洲 --
157
455000
2000
但非洲有一部分 --
07:49
and the difficult thing is, at the same相同 time,
158
457000
2000
同時要注意的是
07:51
not to make a uniform制服 statement聲明 about Africa非洲,
159
459000
4000
不要說到非洲就想到整個非洲
07:55
not to come to simple簡單 ideas思路 of why it is like this, on one hand.
160
463000
4000
一方面不要認為出現現在的情況是因為單一的原因
07:59
On the other hand, try to say that this is not the case案件,
161
467000
3000
另一方面要承認現在的情況很嚴重
08:02
because there is a scientific科學 consensus共識 about this pattern模式 now.
162
470000
4000
現在科學界已經對這個分佈圖達成了共識
08:06
UNAIDS聯合國艾滋病規劃署 have doneDONE good data數據 available可得到, finally最後,
163
474000
3000
UNAIDS終於提供了HIV傳播的
08:09
about the spread傳播 of HIVHIV.
164
477000
3000
詳細數據
08:12
It could be concurrency並發.
165
480000
3000
可能是由於多重性伴
08:15
It could be some virus病毒 types類型.
166
483000
3000
也可能是某些病毒種類
08:18
It could be that there is other things
167
486000
4000
也可能是有別的原因
08:22
which哪一個 makes品牌 transmission傳輸 occur發生 in a higher更高 frequency頻率.
168
490000
3000
使病毒傳播到這樣高的比例
08:25
After all, if you are completely全然 healthy健康 and you have heterosexual異性 sex性別,
169
493000
3000
不管怎樣,如果你完全健康並且是異性戀
08:28
the risk風險 of infection感染 in one intercourse交往 is one in 1,000.
170
496000
5000
每次性交被感染的機會是千分之一
08:33
Don't jump to conclusions結論 now on how to
171
501000
2000
但別輕易得出結論
08:35
behave表現 tonight今晚 and so on.
172
503000
2000
今晚就去胡混
08:37
(Laughter笑聲)
173
505000
2000
(笑聲)
08:39
But -- and if you are in an unfavorable不利 situation情況,
174
507000
3000
但是,如果你處於不利情況
08:42
more sexually transmitted發送 diseases疾病, it can be one in 100.
175
510000
3000
通過性傳染的疾病機會可以達到百分之一
08:45
But what we think is that it could be concurrency並發.
176
513000
3000
但我們認為多個性伴可能是主要原因
08:48
And what is concurrency並發?
177
516000
2000
什麼是多重性伴侶?
08:50
In Sweden瑞典, we have no concurrency並發.
178
518000
2000
在瑞典我們沒有多重性伴侶
08:52
We have serial串行 monogamy一夫一妻制.
179
520000
2000
我們是連續的單一性伴侶
08:54
Vodka伏特加, New Year's年份 Eve前夕 -- new partner夥伴 for the spring彈簧.
180
522000
2000
喝伏特加,除夕夜 -- 春天有新性伴了
08:56
Vodka伏特加, Midsummer's仲夏 Eve前夕 -- new partner夥伴 for the fall秋季.
181
524000
2000
喝伏特加,仲夏夜 -- 秋天有新性伴了
08:58
Vodka伏特加 -- and it goes on like this, you know?
182
526000
2000
喝伏特加 -- 繼續這樣子,你們明白了嗎?
09:00
And you collect蒐集 a big number of exes前男友.
183
528000
3000
這樣你會有很多“前”男、女朋友
09:03
And we have a terrible可怕 chlamydia衣原體 epidemic疫情 --
184
531000
2000
有一種可怕的衣原體傳染病
09:05
terrible可怕 chlamydia衣原體 epidemic疫情 which哪一個 sticks around for many許多 years年份.
185
533000
4000
這種可怕的衣原體傳染病持續多年
09:09
HIVHIV has a peak three to six weeks after infection感染
186
537000
3000
而HIV是在感染後的三到六周有一個活動高峰
09:12
and therefore因此, having more than one partner夥伴 in the same相同 month
187
540000
3000
因此,在一個月裏有多個性夥伴
09:15
is much more dangerous危險 for HIVHIV than others其他.
188
543000
3000
對HIV傳播是特別危險的
09:18
Probably大概, it's a combination組合 of this.
189
546000
2000
很可能,這是原因之一
09:20
And what makes品牌 me so happy快樂 is that we are moving移動 now
190
548000
3000
還有令我高興的是,當我們在考慮這些因素的時候
09:23
towards fact事實 when we look at this.
191
551000
2000
我們也不斷地向真相邁步
09:25
You can get this chart圖表, free自由.
192
553000
2000
大家可以免費取得這份圖表
09:27
We have uploaded上傳 UNAIDS聯合國艾滋病規劃署 data數據 on the GapminderGapminder site現場.
193
555000
3000
我們把UNAIDS的資料上傳到Gapminder.org
09:30
And we hope希望 that when we act法案 on global全球 problems問題 in the future未來
194
558000
4000
並且希望將來在解決全球性問題時
09:34
we will not only have the heart,
195
562000
3000
我們不僅帶著一顆心
09:37
we will not only have the money,
196
565000
2000
不僅帶著錢
09:39
but we will also use the brain.
197
567000
3000
也多用腦子
09:42
Thank you very much.
198
570000
2000
謝謝大家
09:44
(Applause掌聲)
199
572000
6000
(掌聲)
Translated by Geoff Chen
Reviewed by Celia Yeung

▲Back to top

ABOUT THE SPEAKER
Hans Rosling - Global health expert; data visionary
In Hans Rosling’s hands, data sings. Global trends in health and economics come to vivid life. And the big picture of global development—with some surprisingly good news—snaps into sharp focus.

Why you should listen

Even the most worldly and well-traveled among us have had their perspectives shifted by Hans Rosling. A professor of global health at Sweden's Karolinska Institute, his work focused on dispelling common myths about the so-called developing world, which (as he pointed out) is no longer worlds away from the West. In fact, most of the Third World is on the same trajectory toward health and prosperity, and many countries are moving twice as fast as the west did.

What set Rosling apart wasn't just his apt observations of broad social and economic trends, but the stunning way he presented them. Guaranteed: You've never seen data presented like this. A presentation that tracks global health and poverty trends should be, in a word: boring. But in Rosling's hands, data sings. Trends come to life. And the big picture — usually hazy at best — snaps into sharp focus.

Rosling's presentations were grounded in solid statistics (often drawn from United Nations and World Bank data), illustrated by the visualization software he developed. The animations transform development statistics into moving bubbles and flowing curves that make global trends clear, intuitive and even playful. During his legendary presentations, Rosling took this one step farther, narrating the animations with a sportscaster's flair.

Rosling developed the breakthrough software behind his visualizations through his nonprofit Gapminder, founded with his son and daughter-in-law. The free software — which can be loaded with any data — was purchased by Google in March 2007. (Rosling met the Google founders at TED.)

Rosling began his wide-ranging career as a physician, spending many years in rural Africa tracking a rare paralytic disease (which he named konzo) and discovering its cause: hunger and badly processed cassava. He co-founded Médecins sans Frontièrs (Doctors without Borders) Sweden, wrote a textbook on global health, and as a professor at the Karolinska Institut in Stockholm initiated key international research collaborations. He's also personally argued with many heads of state, including Fidel Castro.

Hans Rosling passed away in February 2017. He is greatly missed.


More profile about the speaker
Hans Rosling | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee